Exercise 3 Integrated Logic Systems (Part I)

Prof. Michael Thielscher, Sebastian Voigt International Master Program in Computational Logic — summer term 2009 29.05.2009

Exercise 3.1

Give the \mathcal{L}_3 code for the following program:

 $\begin{array}{ll} add(0,N,N).\\ add(s(M),N,s(L)) &: - & add(M,N,L). \end{array}$

and the \mathcal{L}_3 query ? - add(X, s(0), s(s(0))). Trace the execution of the query and show how the stack, the heap and the trail evolve.

Exercise 3.2

Download the Prolog code for the tableau prover (tableau.pl) from the course web page. Transform the following formula into a Skolem CNF formula and check the validity with Prolog:

$$\begin{split} [(\forall x \exists y)(p(x,y)) \land (\forall x,y)(p(x,y) \to p(y,x)) \land (\forall x,y,z)(p(x,y) \land p(y,z) \to p(x,z))] \\ & \to (\forall x)(p(x,x)) \end{split}$$

Exercise 3.3

Consider the following statement:

"Jaden is a parent without a child."

- a) Using the definitions from SI. IV/18, formulate this statement as an ABox A.
- b) Transform A to negation normal form and replace all defined concepts (i.e. all concepts that occur in a left-hand side of the definitions from SI. IV/18) by their definitions in terms of primitive concepts (those that only occur on right hand sides).
- c) Apply the Transformation Rules for ALC (SI. IV/23) to show that A is inconsistent.