Agenda

• Recap Tableau Calculus

• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations

• Classification

• Summary
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
Tableau Algorithm for ALC Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \Rightarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcup-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcup-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \ni makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcup-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction
Treatment of Knowledge Bases

we condense the TBox into one concept:
for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, $C_T = \text{NNF}(\prod_{1 \leq i \leq n} \neg C_i \sqcup D_i)$

we extend the rules of the \mathcal{ALC} tableau algorithm:

\mathcal{T}-rule: for an arbitrary $v \in V$ with $C_T \notin L(v)$,
let $L(v) := L(v) \cup \{C_T\}$.

in order to take an ABox \mathcal{A} into account, initialize G such that
- V contains a node v_a for every individual a in \mathcal{A}
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ iff $r(a, b) \in \mathcal{A}$
Extensions of the Logic

- plus inverses ($ALCI$): inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules
- plus functional roles ($ALCIF$): merging of nodes to account for functionality

blocking guarantees termination:
- ALC subset-blocking
- plus inverses ($ALCI$): equality blocking
- plus functional roles ($ALCIF$): pairwise blocking
Agenda

• Recap Tableau Calculus
• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations
• Classification
• Summary
Optimizations

- Naïve implementation not performant enough
 - \top-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes
Optimizations

- Naïve implementation not performant enough
 - \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $>1,000$ axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...
Optimizations

- Naïve implementation not performant enough
 - \(\tau \)-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\mathcal{T}:

\begin{align*}
A & \sqsubseteq B \sqcap \exists r.C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r.D
\end{align*}
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[\mathcal{T}: \]
\[
A \sqsubseteq B \sqcap \exists r.C \\
B \equiv C \sqcup D \\
C \sqsubseteq \exists r.D
\]
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\begin{align*}
A & \quad A \sqsubseteq B \sqcap \exists r.C \\
\sim A \sqcap B \sqcap \exists r.C & \quad B \equiv C \sqcup D \\
C & \equiv \exists r.D
\end{align*}
\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[\begin{array}{c}
A \\
\sim A \sqcap B \sqcap \exists r.C \\
\sim A \sqcap (C \sqcup D) \sqcap \exists r.C \\
\end{array} \]

\[\begin{array}{c}
\mathcal{T}: \\
A \sqsubseteq B \sqcap \exists r.C \\
B \sqsubseteq C \sqcup D \\
C \sqsubseteq \exists r.D \\
\end{array} \]
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\begin{align*}
A \\
\text{⊨} A \cap B \cap \exists r.C \\
\text{⊨} A \cap (C \cup D) \cap \exists r.C \\
\text{⊨} A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D)
\end{align*}
\]

\mathcal{T}:

\[
\begin{align*}
A & \equiv B \cap \exists r.C \\
B & \equiv C \cup D \\
C & \equiv \exists r.D
\end{align*}
\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[\begin{align*}
A \\
\sim A \sqcap B \sqcap \exists r.C \\
\sim A \sqcap (C \sqcup D) \sqcap \exists r.C \\
\sim A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\end{align*}\]

\[\mathcal{T}:
\begin{align*}
A &\iff B \sqcap \exists r.C \\
B &\iff C \sqcup D \\
C &\iff \exists r.D
\end{align*}\]

- A is satisfiable w.r.t. \mathcal{T} iff

\[A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)\]

is satisfiable w.r.t. the empty TBox
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
\[U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D) : \]

\[
\begin{align*}
L(v_0) &= \{U, A, (C \cap \exists r.D) \cup D, \\
&\quad \exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
&\quad C, \exists r.D\} \\
L(v_1) &= \{C \cap \exists r.D, C, \exists r.D\} \\
L(v_2) &= \{D\} \\
L(v_3) &= \{D\}
\end{align*}
\]
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \cap ((C \cap \exists r.D) \sqcup D) \sqcap \exists r.(C \cap \exists r.D)$:

$$
\begin{align*}
L(v_0) &= \{U, A, (C \cap \exists r.D) \sqcup D, \\
& \quad \exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
& \quad C, \exists r.D\} \\
L(v_1) &= \{C \cap \exists r.D, C, \exists r.D\} \\
L(v_2) &= \{D\} \\
L(v_3) &= \{D\}
\end{align*}
$$

Only one disjunctive decision left!
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \cap \neg C$ w.r.t. $\mathcal{T} = \{ C \sqsubseteq A \sqcap B \}$
 - unfolding: $C \cap A \cap B \cap \neg (C \cap A \cap B)$
 - NNF + unfolding: $C \cap A \cap B \cap (\neg C \sqcup \neg A \sqcup \neg B)$
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $T = \{ C \sqsubseteq A \sqcap B \}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $A \equiv C \Rightarrow A \sqsubseteq C$ and $A \sqsupseteq C$

\sqsubseteq-rule: For $v \in V$ such that $A \sqsubseteq C \in T$, $A \in L(v)$ and $C \notin L(v)$
let $L(v) := L(v) \cup C$.

\sqsupseteq-rule: For $v \in V$ such that $A \sqsupseteq C \in T$, $\neg A \in L(v)$ and $\neg C \notin L(v)$
let $L(v) := L(v) \cup \{ \neg C \}$.

\neg-rule: For $v \in V$ such that $\neg C \in L(v)$ and $\text{NNF}(\neg C) \notin L(v)$,
let $L(v) := L(v) \cup \{ \text{NNF}(\neg C) \}$.
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCl's, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsubseteq-rules
 - \mathcal{T}_g is treated via the \vdash-rule

Absorption decreases \mathcal{T}_g and increases \mathcal{T}_u.

1. Take an axiom from \mathcal{T}_g, e.g., $A \sqsubseteq B \sqcup \neg C$

2. Transform the axiom:

3. If \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsubseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g.

4. Otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$.

5. Otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u.

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u.

- Nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible.
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqsubseteq B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \sqsubseteq-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$),
 then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
Absorption

- What if T is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - T_u is treated via \subseteq- and \sqsupseteq-rules
 - T_g is treated via the T-rule

- absorption decreases T_g and increases T_u
 1. take an axiom from T_g, e.g., $A \sqcap B \subseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if T_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$),
 then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 $A \sqsubseteq C \sqcup \neg B$ remains in T_g
 4. otherwise, if T_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to T_u

- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u

- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \lnot A \cap \forall r. A \in L(v) \)
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

v ⊓ -rule

$L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
\exists r. \neg A, \forall r. (A \sqcap B)\}$
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \uplus D_1) \cap \ldots \cap (C_n \uplus D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[\bigcap \text{-rule } L(v) := L(v) \cup \{(C_1 \uplus D_1), \ldots, (C_n \uplus D_n), \exists r. \neg A, \forall r. (A \cap B)\} \]

\[\bigcap \text{-rule } L(v) := L(v) \cup \{C_1\} \]

\[\vdots \quad \vdots \quad \vdots \]

\[\bigcap \text{-rule } L(v) := L(v) \cup \{C_n\} \]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \land \forall r.A \in L(v) \)

\[
\begin{align*}
\square\text{-rule } L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\boxed{-}\text{-rule } L(v) & := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\square\text{-rule } L(v) & := L(v) \cup \{C_n\} \\
\exists\text{-rule } L(w) & := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[
\begin{align*}
\Box \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\square \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \\
\square \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \\
\exists \text{-rule} & \quad L(w) := \{\neg A\} \\
\forall \text{-rule} & \quad L(w) := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[L(v) \quad \blacksquare\text{-rule} \quad := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \]

\[L(v) \quad \blacksquare\text{-rule} \quad := \quad L(v) \cup \{C_1\} \]

\[L(v) \quad \blacksquare\text{-rule} \quad := \quad L(v) \cup \{C_n\} \]

\[L(w) \quad \exists\text{-rule} \quad := \quad \{\neg A\} \]

\[L(w) \quad \forall\text{-rule} \quad := \quad \{\neg A, A\} \quad \text{clash} \]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[
\begin{align*}
\land \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \cap B)\} \\
\lor \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\land \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \\
\lor \text{-rule} & \quad L(w) := \{\neg A\} \\
\lor \text{-rule} & \quad L(w) := \{\neg A, A\} \text{ clash} \\
\lor \text{-rule} & \quad L(v) := L(v) \cup \{D_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \uplus D_1) \cap \ldots \cap (C_n \uplus D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[
\begin{align*}
\square \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \uplus D_1), \ldots, (C_n \uplus D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\exists \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \\
\forall \text{-rule} \quad L(w) & := \{\neg A\} \\
\bigcap \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \\
\bigwedge \text{-rule} \quad L(v) & := L(v) \cup \{D_n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\square \text{-rule} &
\quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\}
\end{align*}
\]

\[
\begin{align*}
\square \text{-rule} &
\quad L(v) := L(v) \cup \{C_1\}
\end{align*}
\]

\[
\begin{align*}
\exists \text{-rule} &
\quad L(w) := \{\neg A\}
\end{align*}
\]

\[
\begin{align*}
\forall \text{-rule} &
\quad L(w) := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]

\[
\begin{align*}
\square \text{-rule} &
\quad L(v) := L(v) \cup \{C_n\}
\end{align*}
\]

\[
\begin{align*}
\exists \text{-rule} &
\quad L(w) := \{\neg A\}
\end{align*}
\]

\[
\begin{align*}
\forall \text{-rule} &
\quad L(w) := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $\bigcap (C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
\mathcal{\square\text{-rule}}: \quad L(v) &:= L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
&\quad \exists r. \neg A, \forall r. (A \sqcap B)\} \\
\mathcal{\Box\text{-rule}}: \quad L(v) &:= L(v) \cup \{C_1\} \\
\vdots & \quad \vdots & \quad \vdots \\
\mathcal{\square\text{-rule}}: \quad L(v) &:= L(v) \cup \{C_n\} \\
\mathcal{\exists\text{-rule}}: \quad L(w) &:= \{\neg A\} \\
\mathcal{\forall\text{-rule}}: \quad L(w) &:= \{\neg A, A\} \quad \text{clash} \\
\mathcal{\Box\text{-rule}}: \quad L(v) &:= L(v) \cup \{D_n\} \\
\mathcal{\exists\text{-rule}}: \quad L(w) &:= \{\neg A\} \\
\mathcal{\forall\text{-rule}}: \quad L(w) &:= \{\neg A, A\} \quad \text{clash}
\end{align*}
\]

- exponentially big search space is traversed
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with ∅
 - tableau rules combine and extend these tags
 - △-rule adds the tag \{d\} to the existing tag, where d is the △-depth (number of △-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a △-rule
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with ∅
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
- irrelevant part of the search space is not considered
Dependency-Directed Backtracking

Example

$$(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \tag{tagged with \emptyset} $$
Dependency-Directed Backtracking

Example

\((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\) tagged with ∅
\[L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \cap B)\} \text{ all with } ∅ \]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\sqcap \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n),\]
\[\exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset\]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[\vdots \quad \vdots \quad \vdots\]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]
Dependency-Directed Backtracking

Example

\[
(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset
\]

\[
\begin{array}{c}
\land -\text{rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
\exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset
\end{array}
\]

\[
\begin{array}{c}
\lor -\text{rule} \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}
\end{array}
\]

\[
\begin{array}{c}
\lor -\text{rule} \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}
\end{array}
\]

\[
\begin{array}{c}
\exists -\text{rule} \quad L(w) := \{\neg A\} \quad A, r \text{ tagged with } \emptyset
\end{array}
\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

```
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset \\
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\
\exists \text{-rule} & \quad L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule} & \quad L(w) := \{-A, A\} \quad \neg A \text{ tagged with mit } \emptyset
\end{align*}
```
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

- **\(\sqcup \)-rule**

 \[L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset\]

- **\(\sqcap \)-rule**

 \[L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

- **\(\sqcap \)-rule**

 \[L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]

- **\(\exists \)-rule**

 \[L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset\]

- **\(\forall \)-rule**

 \[L(w) := \{-A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset\]
Dependency-Directed Backtracking

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[\sqcap -\text{rule}\quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \text{ all with } \emptyset\]

\[\sqcup -\text{rule}\quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[\vdots \quad \vdots \quad \vdots\]

\[\sqcup -\text{rule}\quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]

\[\exists -\text{rule}\quad L(w) := \{\neg A\} \quad A, r \text{ tagged with } \emptyset\]

\[\forall -\text{rule}\quad L(w) := \{\neg A, A\} \quad \text{clash}\]

\[-\text{rule}\quad L(w) := \{\neg A\} \quad \neg A \text{ tagged with } \text{mit } \emptyset\]

\[\bullet \tag(A) \cup \tag(\neg A) = \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[\sqcap\text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset\]

\[\sqcap\text{-rule } L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[\vdots \quad \vdots \quad \vdots\]

\[\sqcap\text{-rule } L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]

\[\exists\text{-rule } L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset\]

\[\forall\text{-rule } L(w) := \{-A, A\} \quad \text{clash}\]

\[\neg A \text{ tagged with mit } \emptyset\]

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcap\)-rules has contributed to the cotradiction
Dependency-Directed Backtracking

Example

\[(C_1 ∪ D_1) ∩ \ldots ∩ (C_n ∪ D_n) ∩ \exists r.¬A ∩ ∀ r. A ∈ L(v) \quad \text{tagged with } \emptyset\]

\[
\begin{align*}
\forall\text{-rule} \quad L(v) & := L(v) \cup \{(C_1 ∪ D_1), \ldots, (C_n ∪ D_n), \exists r.¬A, ∀ r. (A ∩ B)\} \quad \text{all with } \emptyset \\
\Box\text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
\vdots & \quad \vdots & \quad \vdots \\
\Box\text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\
\exists\text{-rule} \quad L(w) & := \{¬A\} \quad A, r \text{ tagged with } \emptyset \\
\forall\text{-rule} \quad L(w) & := \{¬A, A\} \quad \text{clash} \\
\end{align*}
\]

- \(\text{tag}(A) ∪ \text{tag}(¬A) = \emptyset\)
- None of the \(\Box\)-rules has contributed to the contradiction
- Output \textit{false} (unsatisfiable)
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Further Optimizations

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r.C \equiv \neg \exists r.\neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., \(A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\} \), \(\forall r. C \equiv \neg \exists r. \neg C \)
 - simplification, e.g., \(\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot \), \(\exists r. \bot \equiv \bot \), \(\forall r. \top \equiv \top \)

- **caching**
 - prevents the repeated construction of equal subtrees
 - \(L(v) \) initialized with \(\{C_1, \ldots, C_n\} \) via \(\exists \)- and \(\forall \)-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of \(C_1 \sqcap \ldots \sqcap C_n \), update the cache
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r. C \equiv \neg\exists r. \neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \cap, \forall, \exists \cup
Further Optimizations

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- caching
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

- heuristics
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \cap, \forall, \cup, \exists

- ...
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T}
 together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 \[\leadsto \text{if } \top \text{ is satisfiable: subsumption does not hold (as we have constructed a counter-model)} \]
 \[\leadsto \text{if } \top \text{ is unsatisfiable: subsumption holds (no counter-model exists)} \]
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $\neg (C \sqcap D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - if \top is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n^2 subsumption checks for n concept names
- normally cached in the concept hierarchy graph
Concept Hierarchy Graph

TU Dresden, 19 June 2014

Deduction Systems
Optimizing Classification

most wide-spread technique is called enhanced traversal
Optimizing Classification

most wide-spread technique is called enhanced traversal
 • hierarchy is created incrementally by introducing concept after concept
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

\[
\text{If } A \sqsubseteq B \text{ and } C \sqsubseteq D \text{ hold, then } B \sqsubseteq C \rightarrow A \sqsubseteq D \text{ and } A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C
\]
Optimizing Classification

most wide-spread technique is called enhanced traversal
- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of \sqsubseteq used to save checks

- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold, then $B \sqsubseteq C \rightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Enhanced Traversal Example

already created hierarchy:

\[\top \]

Disease

\[\perp \]

Joint

JuvDisease

JointDisease

Arthritis

JuvArthritis

Goal: insertion of JointDisease

Top-Down Phase:

\[\text{JointDisease} \sqsubseteq \text{Disease} \]

\[\text{JointDisease} \not\sqsubseteq \text{JuvDisease} \]

\[\text{JointDisease} \not\sqsubseteq \text{Arthritis} \]

Bottom-Up Phase:

\[\text{JuvArthritis} \sqsubseteq \text{JointDisease} \]

\[\text{JuvDisease} \not\sqsubseteq \text{JointDisease} \]

\[\text{Arthritis} \sqsubseteq \text{JointDisease} \]
Enhanced Traversal Example

already created hierarchy:

\[\top \]

\begin{align*}
\text{Disease} & \quad \text{Joint} \\
\text{JuvDisease} & \quad \text{JointDisease} \\
\text{Arthritis} & \\
\text{JuvArthritis} & \\
\end{align*}

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease $\sqsubseteq ?$ Disease

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

 Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊑ JuvDisease
- JointDisease ̸⊑ Arthritis
- JointDisease ̸⊑ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ̸⊑ JointDisease
- Arthritis ⊑ JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\top \quad \text{Disease} \quad \text{Joint} \quad \text{JuvDisease} \quad \text{JointDisease} \quad \bot
\]

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \(\sqsubseteq\) Disease
- JointDisease \(\not\sqsubseteq\) JuvDisease
- JointDisease \(\sqsubseteq?\) Arthritis

Bottom-Up Phase:
- JuvArthritis \(\sqsubseteq\) JointDisease
- JuvDisease \(\not\sqsubseteq\) JointDisease
- Arthritis \(\sqsubseteq\) JointDisease

TU Dresden, 19 June 2014 Deduction Systems
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊆? Disease
- JointDisease ⊄ JuvDisease
- JointDisease ⊄ Arthritis
- JointDisease ⊆? Joint

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

```
⊤
 D  ⊑
  J
  JvD
  JvA  ⊑
    A
    J
     JvA
     JvD
     D
     J
     ⊥
```

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊈ JuvDisease
- JointDisease ⊈ Arthritis
- JointDisease ⊈ Joint

Bottom-Up Phase:
- JuvArthritis ⊑ JointDisease

TU Dresden, 19 June 2014
Deduction Systems
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease $\not\sqsubseteq$ Joint

Bottom-Up Phase:
- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \sqsubseteq JointDisease
Enhanced Traversal Example

already created hierarchy:

\[\top \]

- Disease
 - JointDisease
 - Arthritis
 - JuvDisease
 - Joint
 - JointDisease
 - JuvArthritis
 - Arthritis

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \sqsubseteq \text{Disease}
- JointDisease \not\sqsubseteq \text{JuvDisease}
- JointDisease \not\sqsubseteq \text{Arthritis}
- JointDisease \not\sqsubseteq \text{Joint}

Bottom-Up Phase:
- JuvArthritis \sqsubseteq \text{JointDisease}
- JuvDisease \not\sqsubseteq \text{JointDisease}
- Arthritis \sqsubseteq \text{JointDisease}
Enhanced Traversal Example

already created hierarchy:

\[\top \]

- Disease
 - JuvDisease
 - Arthritis
 - JointDisease
 - Joint
 - JuvArthritis

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq\ Disease
- JointDisease \not\sqsubseteq\ JuvDisease
- JointDisease \not\sqsubseteq\ Arthritis
- JointDisease \not\sqsubseteq\ Joint

Bottom-Up Phase:

- JuvArthritis \sqsubseteq\ JointDisease
- JuvDisease \not\sqsubseteq\ JointDisease
- Arthritis \sqsubseteq\ JointDisease

TU Dresden, 19 June 2014

Deduction Systems
Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Summary

- we have a tableau algorithm for \textit{ALCIF} knowledge bases
 - ABox treated like for \textit{ALC}
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners