Agenda

- Introduction of Lecturer
- Organizational Matters
- What is the “Semantic Web”?
Agenda

- Introduction of Lecturer
- Organizational Matters
- What is the “Semantic Web”?
Introduction of Lecturer

Prof. Dr. Sebastian Rudolph

Since Apr 13 Full Professor for Computational Logic at the Computer Science Department, TU Dresden

2006 – Feb 13 Research Assistant → Project Leader → Privatdozent at the Chair of Knowledge Management, Institute AIFB, University of Karlsruhe → Karlsruhe Institute of Technology

2003 – 2006 Research Assistant at the Chair of Psychology of Teaching and Learning, TU Dresden

2000 – 2003 PhD Scholarship Holder Graduate School, TU Dresden

1995 – 2000 Studies for high-school teaching (Math, Physics, CS), TU Dresden
Introduction of Lecturer

scientific interests

- logic-based knowledge representation and reasoning
- semantic technologies
- complexity and decidability problems
- computational linguistics
- theory of databases
- (and much more)
Agenda

• Introduction of Lecturer
• Organizational Matters
• What is the “Semantic Web”?
Organizational Matters: Time and Place

Wednesday, 16:40 – 18:10
Friday, 14:50 – 16:20, 16:40 – 18:10
exact schedule see below
INF E005
accompanying web page:
http://www.inf.tu-dresden.de/?node_id=3580&ln=en
<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview & XML</td>
<td>09 APR DS6</td>
<td></td>
</tr>
<tr>
<td>Introduction into RDF</td>
<td>11 APR DS5</td>
<td></td>
</tr>
<tr>
<td>RDFS – Syntax & Intuition</td>
<td>11 APR DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 1</td>
<td>16 APR DS6</td>
<td></td>
</tr>
<tr>
<td>RDFS – Semantics</td>
<td>23 APR DS6</td>
<td></td>
</tr>
<tr>
<td>RDFS Rule-based Reasoning</td>
<td>25 APR DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>30 APR DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL – Syntax & Intuition</td>
<td>02 MAY DS5</td>
<td></td>
</tr>
<tr>
<td>SPARQL – Semantics</td>
<td>02 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL Algebra</td>
<td>09 MAY DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>09 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>OWL – Syntax & Intuition</td>
<td>14 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>OWL & Description Logics</td>
<td>16 MAY DS5</td>
<td></td>
</tr>
<tr>
<td>OWL 2</td>
<td>16 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>23 MAY DS5</td>
<td></td>
</tr>
<tr>
<td>Tableau I</td>
<td>23 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>Tableau II</td>
<td>30 MAY DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 5</td>
<td>30 MAY DS6</td>
<td></td>
</tr>
<tr>
<td>Hypertableau I</td>
<td>4 JUN DS6</td>
<td></td>
</tr>
<tr>
<td>Hypertableau II</td>
<td>6 JUN DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 6</td>
<td>6 JUN DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL 1.1</td>
<td>18 JUN DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL Entailment</td>
<td>20 JUN DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 7</td>
<td>20 JUN DS6</td>
<td></td>
</tr>
<tr>
<td>OWL & Rules</td>
<td>25 JUN DS6</td>
<td></td>
</tr>
<tr>
<td>Ontology Editing</td>
<td>27 JUL DS5</td>
<td></td>
</tr>
<tr>
<td>Ontology Engineering</td>
<td>27 JUL DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 8</td>
<td>2 JUL DS6</td>
<td></td>
</tr>
<tr>
<td>Linked Data & Applications</td>
<td>4 JUL DS5</td>
<td></td>
</tr>
<tr>
<td>Q&A Session</td>
<td>9 JUL DS6</td>
<td></td>
</tr>
<tr>
<td>Q&A Session</td>
<td>11 JUL DS5</td>
<td></td>
</tr>
</tbody>
</table>
Literature

Hitzler, Krötzsch, Rudolph, Sure “Semantic Web Grundlagen” Springer-Verlag

Hitzler, Krötzsch, Rudolph, Sure “Foundations of Semantic Web Technologies” CRC Press
Agenda

• Introduction of Lecturer
• Organizational Matters
• What is the “Semantic Web”?
The Web

The Web is at the heart of the transition from industrial to information society, providing the infrastructure for a novel quality of handling information in terms of retrieval and provision

- high availability
- high up-to-date-ness
- low cost
The Web

Commercialization on all levels
The Web

Commercialization on all levels
The Web

Further aspects of daily life are being “webized”:

- authorities, administration (eGovernment)
- education (eLearning, eEducation)
- social contacts (social networking platforms, dating sites)
- everyday life?
Why Semantic Web?

Syntax vs. Semantik

Syntax (from greek συνταξις composition, sentential structure) denotes the (normative) structure of data, i.e., it characterizes what makes data “well-formed”

Semantik (greek σηµαυτικς belonging to the sign) denotes the meaning of data, i.e., it characterizes what conclusions can be drawn from it.

\[
4+3 = 7
\]
syntactically wrong syntactically correct syntactically correct

\[
3 + 4 = 12
\]
syntactically correct semantically wrong semantically correct
Problems of the Web

- plethora of information
- targeted at human end user

Ian Horrocks

Professor Ian Horrocks FRS
Professor of Computer Science
Fellow, Oriel College
ian.horrocks@cs.ox.ac.uk
+44 1865 273939
+44 1865 273839 (fax)
Wolfson Building, Parks Road, Oxford OX1 3QD
Problems of the Web

• plethora of information
• targeted at human end user
Problems of the Web

• plethora of information
• targeted at human end user
Problems of the Web

- plethora of information
- targeted at human end user

Guilin Qi

Professor
School of Computer Science and Engineering
Southeast University
China

Tel : +86 (0) 25 52090910
Fax : +86 (0) 25 52090880
E-mail : gqi@seu.edu.cn

Curriculum Vitae (PDF)

Brief Introduction:
Dr. Guilin Qi is a professor working at Southeast University in China. His research topics include knowledge representation and reasoning, semantic Web, uncertainty reasoning. His current research interests include the areas of

- Knowledge representation: belief merging, belief revision, inconsistency handling, nonmonotonic reasoning, information fusion, argumentation, paraconsistent logic
<h1>Ian Horrocks</h1>
<table>
<tr>
<td class="personImg">

</td>
<td>
<div class="personinfo">
<div>Professor Ian Horrocks FRS</div>
<div>Professor of Computer Science</div>
<div>Fellow, Oriel College</div>
<div>ian.horrocks@cs.ox.ac.uk</div>
<div>+44 1865 273939</div>
<div>+44 1865 273839 (fax)</div>
<p>Wolfson Building, Parks Road, Oxford OX1 3QD</p>
</div>
</td>
</tr>
</table>
Problems of the Web

- localizing information problematic
- today’s search engines good but mostly keyword-based
- desirable: search for content → semantic search
Problems of the Web

• Heterogeneity of present information on diverse levels:
 – character encoding (e.g. ASCII vs. Unicode)
 – used natural languages
 – positioning of information on webpages

• desirable: cross-web information integration
Problems of the Web

- implizit knowledge, i.e. many pieces of information are not provided explicitly, but follow from the combination of the given data
- requires methods from formal logics
- automated deduction
Problems of the Web

Approaches toward a solution:

1. Ad hoc: Deployment of AI methods (most notably NLP techniques) to evaluate existing unstructured information on the Web

2. A priori: Structure information on the Web at authoring time in a way facilitating later automated deployment
Problems of the Web

Approaches toward a solution:

1. Ad hoc: Deployment of AI methods (most notably NLP techniques) to evaluate existing unstructured information on the Web

2. A priori: structure information on the Web at authoring time in a way facilitating later automated deployment

⇒ Semantic Web
Problems of the Web

two essential prerequisites for the implementation:

1. open standards for describing information
 - clearly defined
 - flexible
 - extendable

2. methods for eliciting information from such descriptions

TU Dresden, 9 April 2014
Foundations of Semantic Web Technologies
slide 26 of 53
Semantic Web – Standards

- **1994**: First public presentation of the Semantic Web idea
- **1998**: Start of standardization of data model (RDF) and a first ontology languages (RDFS) at W3C
- **2000**: Start of large research projects about ontologies in the US and Europe (DAML & Ontoknowledge)
- **2002**: Start of standardization of a new ontology language (OWL) based on research results
- **2004**: Finalization of the standard for data (RDF) and ontology (OWL)
- **2008**: Standardization of a query language (SPARQL)
- **2009**: Extension of OWL to OWL 2.0
- **2010**: Standard Rule Interchange Format (RIF)
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces
Annotation with Mark-up Languages

- basic idea of mark-up: endow (unstructured) text with additional information (or structure)
- synonym: annotate text

\[
\begin{align*}
text & = \text{data} \\
\text{additional information} & = \text{metadata}
\end{align*}
\]
Annotation with Mark-up Languages

- common strategy: include to-be-annotated text in so-called tags:

```html
<tag_name> ...Text... </tag_name>
```

- opening tag
- closing tag

- Additional information is read and interpreted by processing software
Annotation with Mark-up Languages

- most prominent example: HTML tags encode visual presentation information:

 <i>This book</i> has the title Foundations of Semantic Web Technologies.

- Output of web browser:
 This book has the title **Foundations of Semantic Web Technologies**.

- Strategy also suited for annotation of content, e.g.:

 <firstname>Sebastian</firstname> <lastname>Rudolph</lastname> works in <city>Dresden</city>.
Annotation with Markup-Languages

- nesting of tags is permitted
Annotation with Markup-Languages

- nesting of tags is permitted
- multiple usage of tags is permitted
- nesting of tags is permitted
- multiple usage of tags is permitted
- XML tags constitute a tree structure
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces
XML

- eXtensible Markup Language
- Origin: structured text (HTML4.0 ∈ XML ⊂ SGML)
- web standard (W3C) for data exchange:
 - input and output data can be described by means of XML
 - industry only has to agree on standardized tag names (the vocabulary)
- complementary language for HTML:
 - HTML describes presentation
 - XML describes content
- database perspective: XML as a data model for semi-structured data
XML-Syntax – Preamble

- XML document is a text document
- starts with declaration
 - contains version number of the standard used
 - optional: character encoding information

```xml
<?xml version="1.0" encoding="utf-8"?>
```
XML-Syntax – XML element

XML element:
- description of an object enclosed by matching tags
- content of an elements: text and/or further elements (arbitrary nesting possible)
- empty elements: `<year></year>` short: `<year/>`
- “outermost” element is called root element (and there can be only one per document)
XML-Syntax – XML attributes

XML attribute:
- pair of name and string-value in start or self-closing tag
- associated with one XML element
- alternative option for describing data

```xml
<author email="sab@abc.com">
    <firstname>Serge</firstname>
    <lastname>Abiteboul</lastname>
</author>
```

Further possible description of the same data:

```xml
<author firstname="Serge" lastname="Abiteboul" email="sab@abc.com"/>
```
HTML vs. XML

- HTML: fixed vocabulary (set of tags) and semantics (visual presentation of text)
- XML: free choice of names for describing application-specific syntax and semantics
- XML ⊂ SGML

```html
<h1> Bib </h1>
<p>
    <i> Foundations of Databases </i>
    Serge Abiteboul
    </br> Addison Wesley, 1997
</p>
```

```xml
<Bib id="01">
    <paper id="012">
        <title> Foundations of Databases </title>
        <author>
            <firstname> Serge </firstname>
            <lastname> Abiteboul </lastname>
        </author>
        <year> 1997 </year>
        <publisher> Addison Wesley </publisher>
    </paper>
    ...
</Bib>
```
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces
URIs – Idea

- URI = Uniform Resource Identifier
- serve for denoting resources in a world-wide unique way
- a resource can be any object that has (in the context of a given application) a clear identity (e.g. books, cities, persons, publishers, relations between those, abstract concepts etc.)
- in certain domains, something similar already exists: ISBN number for books
URIs – Syntax

- extension of the notion of URLs; not every URI relates to a Web document but mostly a Web document is referred to by using its URL as URI
- starts with the so-called URI schema, which is separated by a colon (:) from the subsequent part (e.g.: http, ftp, mailto)
- URIs often hierarchically structured
URIs – Self-defined URIs

- necessary, if for a certain resource no URI exists or is known (yet)
- strategy in order to avoid unintentional double use of a URI for different things: use http-URIs of a webpage that you control
- allows for providing a documentation describing the URI under this address
The Describing vs. the described

- Separation of URIs for (non-information) resources and their documentation (information resources) by URI references (appended fragments starting with “#”) or content negotiation
- e.g.: as a URI for Shakespeare’s “Othello”, http://de.wikipedia.org/wiki/Othello should not be used, but rather http://de.wikipedia.org/wiki/Othello#URI
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces
XML Name Spaces: Motivation

- in XML documents, element and attribute names (“markup vocabulary”) have universal validity
- in an XML application, these names are interpreted uniformly
- if XML data from several sources is merged, name conflicts / clashes may occur
- name spaces help avoid such conflicts
XML Name Spaces

- XML name spaces are similar to the notion of modules in programming languages
- disambiguation of tag names through usage of different “prefixes”
- a prefix is separated from a local name by a colon (:), thereby `prefix:name` tags come into being
- name space bindings are ignored by some tools: so-called “shallow name spaces”
Name Space Bindings

- prefixes are associated with name space URIs by inserting an attribute `xmlns:prefix` into the relevant element or some of its predecessor elements: `prefix:name_1, ..., prefix:name_n`
- the value of the attribute `xmlns:prefix` is a URI, that may point to a description of the syntax of the name space
- an element can use bindings for several (different) name spaces by using separate attributes `xmlns:prefix_1, ..., xmlns:prefix_m`
Example: Without Name Spaces

```xml
<lecture>
  <title> Deduction Systems </title>
  <lecturer>
    <title> Prof. Dr. </title>
    <firstname> Sebastian </firstname>
    <lastname> Rudolph </lastname>
  </lecturer>
</lecture>
```

title is an ambiguous element name
Two Distinct Name Spaces

<title>\texttt{Deduction Systems}</title>

<lec:lecture xmlns:lec = "http://www.example.org/lectures"
 xmlns:per = "http://www.example.org/person">
 <lec:title>\texttt{Deduction Systems}</lec:title>
 <lec:lecturer>
 <per:title>Prof. Dr.</per:title>
 <per:firstname>Sebastian</per:firstname>
 <per:lastname>Rudolph</per:lastname>
 </lec:lecturer>
</lec:lecture>

\textit{title has been disambiguated by using the prefixes lec and per}
Agenda

- XML – Motivation/Idea
- XML – Syntax
- URIs
- Name Spaces