FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

OWL – Syntax & Intuition

Markus Krötzsch

Dresden, 14 May 2014
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Date</th>
<th>Class Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview & XML</td>
<td>11 APR</td>
<td>DS5</td>
</tr>
<tr>
<td>Introduction into RDF</td>
<td>11 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>RDFS – Syntax & Intuition</td>
<td>16 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>Tutorial 1</td>
<td>23 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>RDFS – Semantics</td>
<td>25 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>RDFS Rule-based Reasoning</td>
<td>25 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>30 APR</td>
<td>DS6</td>
</tr>
<tr>
<td>SPARQL – Syntax & Intuition</td>
<td>02 MAY</td>
<td>DS5</td>
</tr>
<tr>
<td>SPARQL – Semantics</td>
<td>02 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>SPARQL Algebra</td>
<td>09 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>09 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>OWL – Syntax & Intuition</td>
<td>14 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>OWL & Description Logics</td>
<td>16 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>OWL 2</td>
<td>16 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>23 MAY</td>
<td>DS5</td>
</tr>
<tr>
<td>Tableau I</td>
<td>23 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>Tableau II</td>
<td>30 MAY</td>
<td>DS5</td>
</tr>
<tr>
<td>Tutorial 5</td>
<td>30 MAY</td>
<td>DS6</td>
</tr>
<tr>
<td>Hypertableau I</td>
<td>4 JUN</td>
<td>DS6</td>
</tr>
<tr>
<td>Hypertableau II</td>
<td>6 JUN</td>
<td>DS5</td>
</tr>
<tr>
<td>Tutorial 6</td>
<td>6 JUN</td>
<td>DS6</td>
</tr>
<tr>
<td>SPARQL 1.1</td>
<td>18 JUN</td>
<td>DS6</td>
</tr>
<tr>
<td>SPARQL Entailment</td>
<td>20 JUN</td>
<td>DS5</td>
</tr>
<tr>
<td>Tutorial 7</td>
<td>20 JUN</td>
<td>DS6</td>
</tr>
<tr>
<td>OWL & Rules</td>
<td>25 JUN</td>
<td>DS6</td>
</tr>
<tr>
<td>Ontology Editing</td>
<td>27 JUL</td>
<td>DS5</td>
</tr>
<tr>
<td>Ontology Engineering</td>
<td>27 JUL</td>
<td>DS6</td>
</tr>
<tr>
<td>Tutorial 8</td>
<td>2 JUL</td>
<td>DS6</td>
</tr>
<tr>
<td>Linked Data & Applications</td>
<td>4 JUL</td>
<td>DS5</td>
</tr>
<tr>
<td>Q&A Session</td>
<td>9 JUL</td>
<td>DS6</td>
</tr>
<tr>
<td>Q&A Session</td>
<td>11 JUL</td>
<td>DS6</td>
</tr>
</tbody>
</table>
OWL
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Ontology in Philosophy

- notion exists only in singular (no “ontologies”)
- denotes the “study of being”
- can be found in philosophical writings of Aristotle (Socrates), Thomas Aquinas, Descartes, Kant, Hegel, Wittgenstein, Heidegger, Quine, …
- term first mentioned in 17th century
Ontology in Computer Science

Gruber (1993):

“An Ontology is a

formal specification ⇒ interpretable by machines
of a shared ⇒ based on consensus
conceptualization ⇒ describes relevant notions
of a domain of interest” ⇒ referring to a “topic”
Ontologies in Practice
Some Requirements

- instantiation of classes by individuals
- conceptual hierarchies (taxonomies, “inheritance”): classes, concepts
- binary relations between individuals: properties, roles
- characteristics of relations (z.B. range, transitive)
- datatypes (e.g. numbers): concrete domains
- logical operators
- clear semantics
RDFS – Simple Ontologies

Classes
- ex:Employee
 - ex:Professor
 - ex:Tutor
 - ex:PhDStudent
- ex:Student
 - ex:AWindeck
- ex:Frank

Relations
- ex:Professor rdfs:domain ex:Employee
 - rdfs:subPropertyOf ex:responsibleFor
 - rdfs:subPropertyOf ex:supervises
- ex:Employee rdfs:domain ex:Employee
 - rdfs:subPropertyOf ex:supervises
- ex:Employee rdfs:range rdf:Literal
 - ex:email

Instanziierung
- subClass
RDF Schema as Ontology Language?

- appropriate for simple ontologies
- advantage: automated inferencing relatively efficient
- but: not appropriate for more complex modeling
- resort to more expressive languages, like
 - OWL
 - RIF ...
Agenda

- Motivation
- **OWL – General Remarks**
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- **OWL Ontologies: Reasoning Tasks**
OWL – General Remarks

- W3C Recommendation since 2004
- semantic fragment of FOL
- three variants:
 - OWL Lite
 - OWL DL
 - OWL Full
- no reification in OWL DL
 \leadsto RDFS is fragment of OWL Full
- OWL DL is decidable
 corresponds to description logic SHOIN(D)
- W3C documents contain details that cannot all be covered here
OWL 1 Variants

• OWL Full
 – contains OWL DL and OWL Lite
 – contains all of RDFS (as the only OWL variant)
 – semantics contains some aspects that are problematic from a logical perspective
 – undecidable
 – limited support by tools
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- **OWL DL**
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)
OWL 1 Variants

- **OWL Full**
 - contains OWL DL and OWL Lite
 - contains all of RDFS (as the only OWL variant)
 - semantics contains some aspects that are problematic from a logical perspective
 - undecidable
 - limited support by tools

- **OWL DL**
 - contains OWL Lite and is sublanguage of OWL Full
 - widely supported by tools
 - complexity NExpTime (worst-case)

- **OWL Lite**
 - sublanguage of OWL DL and OWL Full
 - low expressivity
 - complexity ExpTime (worst-case)
OWL Documents

- are RDF documents
 (at least in the standard syntax; there are others)
- consist of
 - head with general information
 - rest with actual ontology
Head of an OWL Document

definition of name spaces in the root

```xml
<rdf:RDF
    xmlns="http://example.org/exampleontology#"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:owl="http://www.w3.org/2002/07/owl#">
    ...
</rdf:RDF>
```
Head of an OWL Document

general information

<owl:Ontology rdf:about="">
 <rdfs:comment
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 SWRC ontology, version of June 2007
 </rdfs:comment>
 <owl:versionInfo>v0.7.1</owl:versionInfo>
 <owl:imports rdf:resource="http://www.example.org/foo" />
 <owl:priorVersion
 rdf:resource="http://ontoware.org/projects/swrc" />
</owl:Ontology>
Head of an OWL Document

taken from RDFS
rdfs:comment
rdfs:label
rdfs:seeAlso
rdfs:isDefinedBy

for versioning
owl:versionInfo
owl:priorVersion
owl:backwardCompatibleWith
owl:incompatibleWith
owl:DeprecatedClass
owl:DeprecatedProperty

in addition
owl:imports
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Classes, Roles and Individuals

three building blocks of ontology axioms

- classes
 - comparable with classes in RDFS

- individuals
 - comparable with “proper” instances in RDFS

- roles
 - comparable with properties in RDFS
Classes

definition

• <owl:Class rdf:about ="Professor"/>

• equivalent to

<rdf:Description rdf:about="Professor">
 <rdf:type
 rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
</rdf:Description>

pre-defined

• owl:Thing

• owl:Nothing
Individuals

definition via class membership

<rdf:Description rdf:about="rudiStuder">
 <rdf:type rdf:resource="Professor"/>
</rdf:Description>

equivalent:

<Professor rdf:about="rudiStuder"/>
Abstract Roles

abstract roles are defined in a way similar to classes

<owl:ObjectProperty rdf:about="hasAffiliation" />

domain and range of abstract roles

<owl:ObjectProperty rdf:about="hasAffiliation">
 <rdfs:domain rdf:resource="Person" />
 <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>
Concrete Roles

contcrete roles have datatypes as range

```xml
<owl:DatatypeProperty rdf:about="firstName" />
```

domain and range of concrete roles

```xml
<owl:DatatypeProperty rdf:about="firstName">
  <rdfs:domain rdf:resource="Person" />
  <rdfs:range rdf:resource="&xsd:string" />
</owl:DatatypeProperty>
```

many XML datatypes can be used
Individuals and Roles

in general roles are not functional
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Simple Class Relationships

```xml
<owl:Class rdf:about="Professor">
  <rdfs:subClassOf rdf:resource="FacultyMember" />
</owl:Class>
<owl:Class rdf:about="FacultyMember">
  <rdfs:subClassOf rdf:resource="Person" />
</owl:Class>

it follows by inference that Professor is a subclass of Person
```
Simple Class Relationships

<owl:Class rdf:about="Professor">
 <rdfs:subClassOf rdf:resource="FacultyMember" />
</owl:Class>
<owl:Class rdf:about="Book">
 <rdfs:subClassOf rdf:resource="Publication" />
</owl:Class>
<owl:Class rdf:about="FacultyMember">
 <owl:disjointWith rdf:resource="Publication" />
</owl:Class>

It follows by inference that Professor and Book are also disjoint classes
Simple Class Relationships

<owl:Class rdf:about="Man">
 <rdfs:subClassOf rdf:resource="Person" />
</owl:Class>

<owl:Class rdf:about="Person">
 <owl:equivalentClass rdf:resource="Human" />
</owl:Class>

it follows by inference that Man is a subclass of Human
Individuals and Class Relationships

 <author rdf:resource="pascalHitzler" />
 <author rdf:resource="markusKroetzsch" />
 <author rdf:resource="sebastianRudolph" />
</Book>

<owl:Class rdf:about="Book">
 <rdfs:subClassOf rdf:resource="Publication" />
</owl:Class>

it follows by inference that Foundations of Semantic Web Technologies is a Publication.
it follows by inference that rudiStuder is a Professor distinctness of individuals expressed via owl:differentFrom.
Relationships between Individuals

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<Person rdf:about="rudiStuder" />
<Person rdf:about="dennyVrandecic" />
<Person rdf:about="peterHaase" />
</owl:distinctMembers>
</owl:AllDifferent>

abbreviated notation instead of using several owl:differentFrom

usage of owl:AllDifferent and owl:distinctMembers exclusively for this purpose
Closed Classes

```xml
<owl:Class rdf:about="SecretariesOfStuder">
  <owl:oneOf rdf:parseType="Collection">
    <Person rdf:about="giselaSchillinger" />
    <Person rdf:about="anneEberhardt" />
  </owl:oneOf>
</owl:Class>
```

tells that there are only exactly these two SecretariesOfStuder
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Logical Class Constructors

- **logical and (conjunction):**
 \(\text{owl:intersectionOf} \)

- **logical or (disjunction):**
 \(\text{owl:unionOf} \)

- **logical not (negation):**
 \(\text{owl:complementOf} \)

- **used to construct complex classes from simple classes**
Conjunction

<owl:Class rdf:about="SecretariesOfStuder">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="Secretaries" />
 <owl:Class rdf:about="MembersOfStudersGroup" />
 </owl:intersectionOf>
</owl:Class>

it follows by inference that all *SecretariesOfStuder are also* *Secretaries*
Disjunction

```xml
<owl:Class rdf:about="Professor">
  <rdfs:subClassOf>
    <owl:Class>
      <owl:unionOf rdf:parseType="Collection">
        <owl:Class rdf:about="ActivelyTeaching" />
        <owl:Class rdf:about="Retired" />
      </owl:unionOf>
    </owl:Class>
  </rdfs:subClassOf>
</owl:Class>
```
Negation

<owl:Class rdf:about="FacultyMember">
 <rdfs:subClassOf>
 <owl:Class>
 <owl:complementOf rdf:resource="Publication" />
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>

semantically equivalent:

<owl:Class rdf:about="FacultyMember">
 <owl:disjointWith rdf:resource="Publication" />
</owl:Class>
Role Restrictions (allValuesFrom)

used to define complex classes via roles

<owl:Class rdf:about="Exam">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer" />
 <owl:allValuesFrom rdf:resource="Professor" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

i.e., all examiners of an exam have to be professors
Role Restrictions (someValuesFrom)

<owl:Class rdf:about="Exam">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer" />
 <owl:someValuesFrom rdf:resource="Person" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

i.e., every exam must have at least one examiner
Role Restrictions (Cardinalities)

<owl:Class rdf:about="Exam">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer"/>
 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
 2
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

an exam may have at most two examiners
Role Restrictions (Cardinalities)

```xml
<owl:Class rdf:about="Exam">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasTopic"/>
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">3</owl:minCardinality>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>

an exam must cover at least three topics
```
Role Restrictions (Cardinalities)

\[
\text{<owl:Class rdf:about="Exam">}
\text{ <rdfs:subClassOf>}
\text{ <owl:Restriction>}
\text{ <owl:onProperty rdf:resource="hasTopic"/>}
\text{ <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">3}
\text{ </owl:cardinality>}
\text{ </owl:Restriction>}
\text{ </rdfs:subClassOf>}
\text{</owl:Class>}
\]

an exam must cover exactly three topics
Role Restrictions (hasValue)

```xml
<owl:Class rdf:about="ExamStuder">
  <owl:equivalentClass>
    <owl:Restriction>
      <owl:onProperty rdf:resource="hasExaminer" />
      <owl:hasValue rdf:resource="rudiStuder" />
    </owl:Restriction>
  </owl:equivalentClass>
</owl:Class>

owl:hasValue always refers to one singular individual
the above is equivalent to the example on the next slide
Role Restrictions (hasValue)

```xml
<owl:Class rdf:about="ExamStuder">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="hasExaminer" />
 <owl:someValuesFrom>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="rudiStuder" />
 </owl:oneOf>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>
```
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
Role Relationships

<owl:ObjectProperty rdf:about="hasExaminer">
    <rdfs:subPropertyOf rdf:resource="hasParticipant" />
</owl:ObjectProperty>

Likewise: owl:equivalentProperty roles can be inverses of each other:

<owl:ObjectProperty rdf:about="hasExaminer">
    <owl:inverseOf rdf:resource="examinerOf"/>
</owl:ObjectProperty>
Role Characteristics

• domain
• range
• transitivity, i.e.
  \( r(a, b) \text{ and } r(b, c) \text{ imply } r(a, c) \)
• symmetry, i.e.
  \( r(a, b) \text{ implies } r(b, a) \)
• functionality
  \( r(a, b) \text{ and } r(a, c) \text{ imply } b = c \)
• inverse functionality
  \( r(a, b) \text{ and } r(c, b) \text{ imply } a = c \)
Domain and Range

<owl:ObjectProperty rdf:about="isMemberOf">
  <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>

equivalent to:

<owl:Class rdf:about="&owl;Thing">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="isMemberOf" />
      <owl:allValuesFrom rdf:resource="Organization" />
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
Domain and Range: Caution!

<owl:ObjectProperty rdf:about="isMemberOf">
  <rdfs:range rdf:resource="Organization" />
</owl:ObjectProperty>
<number rdf:about="five">
  <isMemberOf rdf:resource="PrimeNumbers" />
</number>

it follows that PrimeNumbers are an Organization!
Role Characteristics

<owl:ObjectProperty rdf:about="hasColleague">
  <rdf:type rdf:resource="&owl;TransitiveProperty" />
  <rdf:type rdf:resource="&owl;SymmetricProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasProjectLeader">
  <rdf:type rdf:resource="&owl;FunctionalProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="isProjectLeaderFor">
  <rdf:type rdf:resource="&owl;InverseFunctionalProperty" />
</owl:ObjectProperty>
<Person rdf:about="peterHaase">
  <hasColleague rdf:resource="philippCimiano" />
  <hasColleague rdf:resource="stefenLamparter" />
  <isProjectLeaderFor rdf:resource="neOn" />
</Person>
<Project rdf:about="x-Media">
  <hasProjectLeader rdf:resource="philippCimiano" />
  <hasProjectLeader rdf:resource="cimianoPhilipp" />
</Project>

TU Dresden, 14 May 2014    Foundations of Semantic Web Technologies
Consequences from the Example

- steffenLamparter hasColleague peterHaase
- steffenLamparter hasColleague philippCimiano
- philippCimiano owl:sameAs cimianoPhilipp
Agenda

- Motivation
- OWL – General Remarks
- Classes, Roles and Individuals
- Class Relationships
- Complex Classes
- Role Characteristics
- OWL Variants
- OWL Ontologies: Reasoning Tasks
OWL 1 Variants

- **OWL Full**
  - contains OWL DL and OWL Lite
  - contains all of RDFS (as the only OWL variant)
  - semantics contains some aspects that are problematic from a logical perspective
  - undecidable
  - limited support by tools
OWL 1 Variants

- OWL Full
  - contains OWL DL and OWL Lite
  - contains all of RDFS (as the only OWL variant)
  - semantics contains some aspects that are problematic from a logical perspective
  - undecidable
  - limited support by tools

- OWL DL
  - contains OWL Lite and is sublanguage of OWL Full
  - widely supported by tools
  - complexity NExpTime (worst-case)
OWL 1 Variants

- **OWL Full**
  - contains OWL DL and OWL Lite
  - contains all of RDFS (as the only OWL variant)
  - semantics contains some aspects that are problematic from a logical perspective
  - undecidable
  - limited support by tools

- **OWL DL**
  - contains OWL Lite and is sublanguage of OWL Full
  - widely supported by tools
  - complexity NExpTime (worst-case)

- **OWL Lite**
  - sublanguage of OWL DL and OWL Full
  - low expressivity
  - complexity ExpTime (worst-case)
OWL Full

- unrestricted use of all OWL and RDFS language elements (has to be valid RDFS)
- difficult e.g.: non-existent type separation (classes, roles, individuals), thus:
  - owl:Thing becomes the same as rdfs:resource
  - owl:Class becomes the same as rdfs:Class
  - owl:DatatypeProperty becomes a subclass of
    owl:ObjectProperty
  - owl:ObjectProperty becomes the same as rdf:Property
Example for Confusion of Types in OWL Full

<owl:Class rdf:about="Book">
  <germanName rdf:datatype="&xsd;string">Buch</germanName>
  <frenchName rdf:datatype="&xsd;string">livre</frenchName>
</owl:Class>

Inferences about such constructs are rarely needed in practice.
OWL DL

- only usage of RDFS language elements that are explicitly allowed (like those in our examples)
  not allowed: rdfs:Class, rdfs:Property

- type separation: classes and roles have to be explicitly declared

- concrete roles must not be specified as transitive, symmetric, inverse or inverse functional

- number restrictions must not be used with transitive roles, their subroles, or inverses thereof
OWL Lite

- all restrictions of OWL DL
- moreover:
  - not allowed: oneOf, unionOf, complementOf, hasValue, disjointWith
  - number restrictions only allowed with 0 and 1
  - some constraints referring to anonymous (complex) classes, e.g., only in the subject of rdfs:subClassOf
Agenda

• Motivation
• OWL – General Remarks
• Classes, Roles and Individuals
• Class Relationships
• Complex Classes
• Role Characteristics
• OWL Variants
• OWL Ontologies: Reasoning Tasks
Terminological Queries to OWL Ontologies

- class equivalence
- subclass relationships
- disjointness of classes
- global consistency (aka satisfiability)
- class consistency: a class is inconsistent if it is equivalent to `owl:Nothing` – this hints to a modeling error:

```xml
<owl:Class rdf:about="Book">
 <owl:subClassOf rdf:resource="Publication"/>
 <owl:disjointWith rdf:resource="Publication"/>
</owl:Class>
```
Assertional Queries to OWL Ontologies

- instance checking: does a given individual belong to a given class?
- search for all individuals that are members of a given class
- are two given individuals linked by a role?
- search for all individual pairs that are linked by a certain role
- ... caution: only “provable” answers will be given!
OWL 1 Language Elements

**head**
- rdfs:comment
- rdfs:label
- rdfs:seeAlso
- rdfs:isDefinedBy
- owl:versionInfo
- owl:priorVersion
- owl:backwardCompatibleWith
- owl:incompatibleWith
- owl:DeprecatedClass
- owl:DeprecatedProperty
- owl:imports

**relationships between individuals**
- owl:sameAs
- owl:differentFrom
- owl:AllDifferent
- owl:distinctMembers

**pre-defined datatypes (OWL 1)**
- xsd:string
- xsd:integer
class constructors and -relationships

- owl:Class
- owl:Thing
- owl:Nothing
- rdfs:subClassOf
- owl:disjointWith
- owl:equivalentClass
- owl:intersectionOf
- owl:unionOf
- owl:complementOf

role restrictions

- owl:allValuesFrom
- owl:someValuesFrom
- owl:hasValue
- owl:cardinality
- owl:minCardinality
- owl:maxCardinality
- owl:oneOf
OWL Language Elements

role constructors, relationships and characteristics

- owl:ObjectProperty
- owl:DatatypeProperty
- rdfs:subPropertyOf
- owl:equivalentProperty
- owl:inverseOf
- rdfs:domain
- rdfs:range
- owl:TransitiveProperty
- owl:SymmetricProperty
- owl:FunctionalProperty
- owl:InverseFunctionalProperty
Further Literature

- http://www.w3.org/2004/OWL/ central W3C web page for OWL
- http://www.w3.org/TR/owl-features/ overview over OWL
- http://www.w3.org/TR/owl-ref/ comprehensive description of the OWL language components
- http://www.w3.org/TR/owl-guide/ introduction into OWL knowledge modeling
- http://www.w3.org/TR/owl-semantics/ describes the semantics of OWL and the abstract syntax for OWL DL (⇝ later lecture)