

FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

OWL 2 – Syntax and Semantics

Markus Krötzsch

Content

Overview & XML	11 APR DS5	Tableau I	23 MAY DS6
Introduction into RDF	11 APR DS6	Tableau II	30 MAY DS5
RDFS – Syntax & Intuition	16 APR DS6	Tutorial 5	30 MAY DS6
Tutorial 1	23 APR DS6	Hypertableau I	4 JUN DS6
RDFS – Semantics	25 APR DS5	Hypertableau II	6 JUN DS5
RDFS Rule-based Reasoning	25 APR DS6	Tutorial 6	6 JUN DS6
Tutorial 2	30 APR DS6	SPARQL 1.1	18 JUN DS6
SPARQL – Syntax & Intuition	02 MAY DS5	SPARQL Entailment	20 JUN DS5
SPARQL – Semantics	02 MAY DS6	Tutorial 7	20 JUN DS6
SPARQL Algebra	09 MAY DS5	OWL & Rules	25 JUN DS6
Tutorial 3	09 MAY DS6	Ontology Editing	27 JUL DS5
OWL - Syntax & Intuition	14 MAY DS6	Ontology Engineering	27 JUL DS6
OWL & Description Logics	16 MAY DS5	Tutorial 8	2 JUL DS6
OWL 2	16 MAY DS6	Linked Data & Applications	4 JUL DS5
Tutorial 4	23 MAY DS5	Q&A Session	9 JUL DS6
		Q&A Session	11 JUL DS5

OWL 2

OWL 2

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with SROIQ
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

Agenda

- Recap OWL & Overview OWL 2
- The Description Logic SROIQ
- Inferencing with SROIQ
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

OWL still too weak for certain tasks

OWL still too weak for certain tasks

 OWL insufficient as query language

OWL still too weak for certain tasks

- OWL insufficient as ontology language
 → FOL-based rule extensions, SWRL & RIF

OWI still too weak for certain tasks

- OWL insufficient as query language → conjunctive queries, SPARQL for OWL
- OWL insufficient as ontology language → FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?

OWI still too weak for certain tasks

- OWL insufficient as query language → conjunctive queries, SPARQL for OWL
- OWL insufficient as ontology language → FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended? ~ OWI 2

Development of OWL 2

OWL 2 as "updated version" of OWL

Extensions due to practical experiences with OWL 1.0:

- additional expressivity due to new ontological axioms
- extralogical extensions (syntax, metadata, ...)
- complete revision of the OWL variants (Lite/DL/Full)

Goals:

- compatibility with the existing OWL standard
- preservation of decidability of OWL DL
- correction of problems in the OWL 1.0 standard

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with \mathcal{SROIQ}
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

From SHOIN to SROIO

OWL DL based on DL SHOIN(D):

- axioms:
 - TBox: subclass relationships $C \sqsubseteq D$
 - RBox: subrole relationships $R \sqsubseteq S(\mathcal{H})$, inverse roles $R^-(\mathcal{I})$, transitivity
 - ABox: class assertions C(a), role assertions R(a,b), equality $a \approx b$, inequality $a \approx b$
- class constructors:
 - conjunction $C \sqcap D$, disjunction $C \sqcup D$, negation $\neg C$ of classes
 - role restrictions: universal $\forall R.C$ and existential $\exists R.C$
 - number restrictions (\mathcal{N}): $\leq nR$ and $\geq nR$ (n non-negative integer)
 - nominals (\mathcal{O}): {a}
- datatypes (D)

OWL 2 extends this to SROIQ(D)

ABox

\mathcal{SHOIN} supports different ABox assertions:

- class membership C(a) (C complex class),
- special case: negated class membership $\neg C(a)$ (*C* complex class),
- equality $a \approx b$,
- inequality $a \not\approx b$
- role membership R(a, b)

ABox

\mathcal{SHOIN} supports different ABox assertions:

- class membership C(a) (C complex class),
- special case: negated class membership $\neg C(a)$ (C complex class),
- equality $a \approx b$,
- inequality $a \not\approx b$
- role membership R(a, b)
- negated role membership?

ABox

\mathcal{SHOIN} supports different ABox assertions:

- class membership C(a) (C complex class),
- special case: negated class membership $\neg C(a)$ (*C* complex class),
- equality $a \approx b$,
- inequality $a \not\approx b$
- role membership R(a, b)
- negated role membership?
- $\rightsquigarrow SROIQ$ allows negated roles in der ABox: $\neg R(a,b)$

Number Restrictions

 \mathcal{SHOIN} supports only unqualified number restrictions (\mathcal{N}):

Person $\square \ge 3$ has Child

"class of all persons with 3 or more children"

Number Restrictions

SHOIN supports only unqualified number restrictions (N):

Person □ >3 hasChild

"class of all persons with 3 or more children"

 $\rightsquigarrow SROIQ$ also allows qualified number restrictions (Q):

Person $\sqcap \ge 3$ hasChild.(Woman \sqcap Professor)

"class of all persons with 3 or more daughters who are professors"

The Self "Concept"

Modeling task: "Every human knows himself/herself."

The Self "Concept"

Modeling task: "Every human knows himself/herself."

• SHOIN:

knows(tom, tom) knows(tina, tina) knows(udo, udo) ...

The Self "Concept"

Modeling task: "Every human knows himself/herself."

• SHOIN:

```
knows(tom, tom) knows(tina, tina) knows(udo, udo) ...
```

→ not generally applicable

SROIQ: specific notation Self

Human

∃knows.Self

Role Axioms in \mathcal{SHOIN}

\mathcal{SHOIN} provides few role axioms:

 Trans(r), owl: TransitiveProperty: r is transitive Example: Trans(locatedIn)

Role Axioms in \mathcal{SHOIN}

\mathcal{SHOIN} provides few role axioms:

- Trans(r), owl: TransitiveProperty: r is transitive Example: Trans(locatedIn)
- Sym(r), owl:SymmetricProperty: r is symmetric Example: Sym(relativeOf) also: r

 r

Role Axioms in \mathcal{SHOIN}

SHOIN provides few role axioms:

- Trans(r), owl: TransitiveProperty: r is transitive Example: Trans(locatedIn)
- Func(r), owl:FunctionalProperty: r is functional Example: Func(hasFather) also: ⊤ □ ≤ 1 r

Role Axioms in SHOLN

SHOIN provides few role axioms:

- Trans(r), owl: TransitiveProperty: r is transitive Example: Trans(locatedIn)
- Sym(r), owl:SymmetricProperty: r is symmetric Example: Sym(relativeOf) also: $r \sqsubseteq r^-$
- Func(r), owl: Functional Property: r is functional Example: Func(hasFather) also: $\top \sqsubseteq \leq 1 r$
- InvFunc(r), owl: InverseFunctionalProperty: r is inverse functional
 - Example: InvFunc(isFatherOf) also $\top \sqsubseteq \leq 1 \, r^-$ or $\mathsf{Func}(r^-)$

Role Axioms in SROIQ

SROIQ provides additional statements about roles:

• Asym(r), owl: AsymmtericProperty: r is asymmetric, $(x, y) \in r^{\mathcal{I}}$ implies $(y, x) \notin r^{\mathcal{I}}$ Example: Asym(hasChild)

Role Axioms in SROIQ

SROIQ provides additional statements about roles:

- Asym(r), owl: AsymmtericProperty: r is asymmetric, (x, y) ∈ r^T implies (y, x) ∉ r^T Example: Asym(hasChild)
- $\mathsf{Dis}(r,s)$, owl : $\mathsf{propertyDisjointWith}$, owl : $\mathsf{AllDisjointProperties}$: r and s are disjoint, $(x,y) \not\in r^{\mathcal{I}} \cap s^{\mathcal{I}}$ for all x,y

Example: Dis(hasFather, hasSon)

Role Axioms in SROIQ

SROIQ provides additional statements about roles:

- Asym(r), owl: AsymmtericProperty: r is asymmetric, (x, y) ∈ r^T implies (y, x) ∉ r^T Example: Asym(hasChild)
- Dis(r, s), owl:propertyDisjointWith,, owl:AllDisjointProperties: r and s are disjoint, $(x, y) \notin r^{\mathcal{I}} \cap s^{\mathcal{I}}$ for all x, y
 - Example: Dis(hasFather, hasSon)
- Ref(r), owl:ReflexiveProperty: r is reflexive, $(x,x) \in r^{\mathcal{I}}$ for all domain individuals x Example: Ref(knows)

(But does, say, a table really "know" itself? Maybe the least used OWL 2 feature . . .)

Role Axioms in SROIO.

SROIQ provides additional statements about roles:

- Asym(r), owl: Asymmteric Property: r is asymmetric, $(x, y) \in r^{\mathcal{I}}$ implies $(v, x) \notin r^{\mathcal{I}}$ Example: Asym(hasChild)
- Dis(r, s), owl:propertyDisjointWith,, owl:AllDisjointProperties: r and s are disjoint, $(x, y) \notin r^{\mathcal{I}} \cap s^{\mathcal{I}}$ for all x, yExample: Dis(hasFather, hasSon)
- Ref(r), owl: ReflexiveProperty: r is reflexive, $(x,x) \in r^{\mathcal{I}}$ for all domain individuals x Example: Ref(knows)
 - (But does, say, a table really "know" itself? Maybe the least used OWL 2 feature ...)
- Irr(r), owl: IrreflexiveProperty: r is irreflexive, $(x,x) \notin r^{\mathcal{I}}$ for all domain individuals x Example: Irr(hasChild)

The Universal Role

SROIQ provides the universal role:

 universal role U (owl:TopObjectProperty): $(x, y) \in U^{\mathcal{I}}$ for all x, y

Example

 $\top \sqsubseteq \leqslant 7\,000\,000\,000\,U$.Human (not recommended!)

- \rightarrow U is mainly useful as a counterpart for \top , e.g., as root element in a graphically displayed role hierarchy
- the converse owl: BottomObjectProperty has been introduced in OWL, but has no corresponding syntactic element in DLs (Excercise: use DL axioms to define an empty role)
- for datatype properties analog owl: TopDataProperty and owl:BottomDataProperty

Complex Role Inclusion

"The friends of my friends are my friends."

 \rightsquigarrow can be expressed in \mathcal{SHOIN} : hasFriend is transitive

"The enemies of my friends are my enemies."

 \leadsto annot be expressed in \mathcal{SHOIN}

Complex Role Inclusion

- "The friends of my friends are my friends."
- \rightsquigarrow can be expressed in \mathcal{SHOIN} : hasFriend is transitive
- "The enemies of my friends are my enemies."
- \leadsto annot be expressed in \mathcal{SHOIN}

complex role inclusion

- RBox-expressions of the form $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq s$
- Semantics: if $(x_0, x_1) \in r_1^{\mathcal{I}}$, $(x_1, x_2) \in r_2^{\mathcal{I}}$, ..., $(x_{n-1}, x_n) \in r_n^{\mathcal{I}}$, then $(x_0, x_n) \in s^{\mathcal{I}}$

Complex Role Inclusions – Example

Example

```
\begin{array}{l} \mathsf{hasFriend} \circ \mathsf{hasEnemy} \sqsubseteq \mathsf{hasEnemy:} \\ \mathsf{if} \; (x,y) \in \mathsf{hasFriend}^{\mathcal{I}} \; \mathsf{and} \; (y,z) \in \mathsf{hasEnemy}^{\mathcal{I}}, \\ \mathsf{then} \; \mathsf{also} \; (x,z) \in \mathsf{hasEnemy}^{\mathcal{I}}. \end{array}
```

Further examples

partOf ∘ belongsTo

belongsTo

hasBrother ∘ hasChild ⊑ isUncleOf

Expressivity of Complex Role Inclusions

How complicated are complex role inclusions?

RBoxes allow for encoding formal languages:

grammar for language of words ab, aabb, aaabbb, ...:

In fact, this way, all context-free languages can be encoded. This even enables us to encode the emptiness problem for intersection of two context-free languages into KB satisfiability.

→ OWL with (unrestricted) role inclusions is undecidable.

Regular RBoxes

Can complex role inclusion be restricted in order to retain decidability?

- RBoxes correspond to grammars for context-free languages
- intersection of these problematic
- → restriction to regular languages!

In order to guarantee decidability of inferencing, the set of role inclusions has to be regular

- there has to be a strict linear order ≺ over the roles such that every RIA has one of the following forms (with s_i ≺ r for all 1 ≤ i ≤ n):
 - $r \circ r \sqsubseteq r$
 - $r^- \sqsubseteq r$
 - $s_1 \circ s_2 \circ \ldots \circ s_n \sqsubseteq r$

- $r \circ s_1 \circ s_2 \circ \ldots \circ s_n \sqsubseteq r$
- $s_1 \circ s_2 \circ \ldots \circ s_n \circ r \sqsubseteq r$

• Example 1: $r \circ s \sqsubseteq r$ $s \circ s \sqsubseteq s$ $r \circ s \circ r \sqsubseteq t$

- Example 1: $r \circ s \sqsubseteq r$ $s \circ s \sqsubseteq s$ $r \circ s \circ r \sqsubseteq t$ \rightsquigarrow regular with order $s \prec r \prec t$
- Example 2: $r \circ t \circ s \sqsubseteq t$

- Example 1: $r \circ s \sqsubseteq r$ $s \circ s \sqsubseteq s$ $r \circ s \circ r \sqsubseteq t$ \rightsquigarrow regular with order $s \prec r \prec t$
- Example 2: $r \circ t \circ s \sqsubseteq t$ → not regular, form not allowed
- Example 3: $r \circ s \sqsubseteq s \quad s \circ r \sqsubseteq r$

- Example 1: $r \circ s \sqsubseteq r$ $s \circ s \sqsubseteq s$ $r \circ s \circ r \sqsubseteq t$ \rightsquigarrow regular with order $s \prec r \prec t$
- Example 2: $r \circ t \circ s \sqsubseteq t$
 - → not regular, form not allowed
- Example 3: $r \circ s \sqsubseteq s \quad s \circ r \sqsubseteq r$
 - → not regular, since no appropriate order exists

Revisiting the Definition of Simple Roles

- simple roles in SHOIN = roles without transitive subroles
- in SROIO we need to take RIAs into account

Revisiting the Definition of Simple Roles

simple roles are all roles...

- that do not occur on the right of a role inclusion.
- that are inverses of other simple roles,
- that occur only on the right of RIAs where the left consists of a length-one chain with a simple role.

(Caution: inductive definition)

→ non-simple are roles that can be derived from a chain of roles with length at least 2

Revisiting the Definition of Simple Roles

simple roles are all roles...

- that do not occur on the right of a role inclusion.
- that are inverses of other simple roles.
- that occur only on the right of RIAs where the left consists of a length-one chain with a simple role.

(Caution: inductive definition)

→ non-simple are roles that can be derived from a chain of roles with length at least 2

```
Expressions \langle nr.C, \rangle nr.C, Irr(r), Dis(r, s), \exists r. Self, \neg r(a, b)
are only allowed for simple roles r and s!
(Reason: ensure decidability)
```


Overview SROIQ – TBoxes

class expressions

class names A. B $C \sqcap D$ conjunction disjunction $C \sqcup D$ negation $\neg C$ existential role restriction $\exists r.C$ universal role restriciton $\forall r.C$ Self $\exists s.Self$ atleast restriction $\geq n s.C$ atmost restriction $\leq n s.C$ nominals {*a*}

TBox (class axioms)

inclusion $C \sqsubseteq D$ equivalence $C \equiv D$

Overview SROIQ – RBoxes & ABoxes

		ABOX (assertions)	
Roles		class membership	C(a)
roles	r, s, t	role membership	r(a, a)
simple roles	s, t	neg. role membership	$\neg s(a$
universal role	и	equality	$a \approx$
		inequality	a ≉

RBox (role axioms)

inclusion	$r_1 \sqsubseteq r_2$
complex role inclusion	$r_1 \circ \ldots \circ r_n \sqsubseteq r$
transitivity	Trans(r)
symmetry	Sym(r)
reflexivity	Ref(r)
irreflexivity	Irr(s)
disjointness	Dis(s, t)

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with SROIQ
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

How complicated is SROIQ?

Recap: \mathcal{SHOIN} (OWL DL) is very complex (NExpTime)

How complicated is SROIQ?

Recap: SHOIN (OWL DL) is very complex (NExpTime) Observation: some modeling features are not really necessary ("syntactic sugar")

- Trans(r) can be expressed as $r \circ r \sqsubseteq r$
- Sym(r) can be expressed as $r^- \sqsubseteq r$
- Asym(r) can be expressed as $Dis(r, r^-)$
- Irr(s) can be expressed as $\top \sqsubseteq \neg \exists S.Self$
- ABox can be represented by TBox axioms with nominals, e.g. r(a, b)becomes $\{a\} \sqsubseteq \exists r.\{b\}$

Qualified number restrictions do not cause problems (known and implemented before)

```
→ main problem: role axioms (RBox)
```


Role Inclusions, Languages, Automata

How to deal with RBoxes?

- RBox inclusions resemble formal grammars
- every role r defines a regular language: the language of role chains from which it follows
- regular languages \equiv regular expressions \equiv finite automata

→ approach: tableau methods are extended by "RBox automata"

Decidability of SROIQ

Tableau method for SROIQ shows decidability

- Algorithm has a good adaptation behaviour: modeling features that are not used do hardly impede computation ("pay as you go")
- Tableau method not useful for complexity considerations
- SROIQ N2ExpTime-complete
 - RIQ and SROIQ are Harder than SHOIQ. Yevgeny Kazakov.
 In Gerhard Brewka and Jérôme Lang, editors, KR 2008. Pages 274-284. AAAI Press. 2008
 - Lower bound: encoding of a 2Exp tiling problem
 - Upper bound: exponential translation into the 2-variable fragment of FOL with counting quantifiers, C₂, for which satisfiability checking is known to be NExpTime-complete)

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with SROIQ
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

OWL 2 DL: Further Aspects

SROIQ is "only" logical foundation of OWL 2 DL

Further non-logical aspects:

- Syntax (extension necessary)
- Datatype declarations and datatype functions, new datatypes
- Metamodeling: "punning"
- Comments and ontological metadata
- Inverse-functional concrete roles (datatype properties): Keys
- Mechanisms for ontology import
- ... various smaller changes

Metamodeling

Metamodeling

Specification of ontological knowledge about elements of the ontology (including classes, roles, axioms).

Examples:

- "The class Person was created on the 1st Jan 2008 by bglimm."
- "For the class City, we recommend the property numberOfCitizens."
- "The statement 'Dresden was founded in 1206' was extracted automatically with a confidence of 85%."

(Compare Reification in RDF Schema)

Punning in OWL

Metamodeling in expressive logics is dangerous and expensive!

OWL 2 currently supports the simples form of metamodeling:

Punning

- the names for classes, roles, individuals do not have to be disjoint
- no logical relationship between class, individual and role of the same name
- only relevant for pragmatic interpretation

Example:

Person(Birte) classCreatedBy(Person, bglimm)

Comments and Metadata

Punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?

• comments in XML files: <!-- comment. -->

Comments and Metadata

Punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?

- comments in XML files: <!-- comment --> → no relation to the OWL axioms in this file.
- non-logical annotations in OWL 2: owl:AnnotationProperty

Comments and Metadata

Punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?

- comments in XML files: <!-- comment --> → no relation to the OWL axioms in this file.
- non-logical annotations in OWL 2: owl:AnnotationProperty → attached to (semantic) ontological element

Syntactic Aspects

New/extended syntaxes:

- RDF/XML: extension by OWL 2 elements
- functional-style syntax: replaces "abstract syntax" in OWL 1
- OWL/XML: syntax for simpler processing in XML tools
- Turtle: RDF triple syntax
- Manchester syntax: syntax that is easier to read for humans

Quo vadis, OWL Lite?

Quo vadis, OWL Lite?

OWL Lite as a Failure:

- almost as complex as OWL DL
- complicated syntax that does not provide direct access to actual modeling power
- use in ontologies only "by accident", not deliberately

Original goal:

capture the part of OWL that is easy and efficiently implementable

Quo vadis, OWL Lite?

OWL Lite as a Failure:

- almost as complex as OWL DL
- complicated syntax that does not provide direct access to actual modeling power
- use in ontologies only "by accident", not deliberately

Original goal:

capture the part of OWL that is easy and efficiently implementable

→ OWI 2 Profiles

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with \mathcal{SROIQ}
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

OWL 2 Profiles

OWL 2 defines three fragments where automated inferencing can be done in **PTime**

- OWL EL
 - computation of the class hierarchy (all subclass relationships) in **PTime**

OWL 2 Profiles

OWL 2 defines three fragments where automated inferencing can be done in **PTime**

- OWL EL
 - computation of the class hierarchy (all subclass relationships) in **PTime**
- OWL QL
 - conjunctive queries in AC₀ (data complexity) → reducible to SQL

OWL 2 Profiles

OWL 2 defines three fragments where automated inferencing can be done in **PTime**

- OWL EL
 - computation of the class hierarchy (all subclass relationships) in **PTime**
- OWI OI
 - conjunctive queries in AC₀ (data complexity) → reducible to SQL
- OWI RI
 - can be used as an extension of RDFS or as a fragment of OWL DL (OWL Direct Semantics)
 - complexity PTime

OWL 2 EL

- · An (almost maximal) fragment of OWL 2 such that
 - satisfiability can be checked in PTime (PTime-complete)
 - data complexity for ABox queries also PTime-complete
- Class hierarchy (all subsumption relationships between atomic classes) can be computed in one pass
- Reasoning based on saturation methods first developed for the description logic \mathcal{EL}

(with significant contributions from researchers at TU Dresden ...)

OWL 2 EL

- Allowed:
 - subclass axioms with conjunction, existential restriction, \top , \bot , singleton nominals
 - complex RIAs, range restrictions (under certain conditions)
- Not allowed:
 - negation, disjunction, universal restrictions, inverse roles

OWL 2 QL

- An (almost maximal) fragment of OWL 2 such that
 - data complexity of conjunctive query answering is in AC⁰
- Queries can be rewritten such that no terminological knowledge has to be taken into account
 - ⇒ standard RDBMS can be used for storage and querying

OWL 2 QL

- Allowed:
 - simple role hierarchies, domain & range axioms
 - subclass axioms with
 - left: class name or existential restriction with ⊤
 - · right: conjunction of class names, existential restriction and negation of left expressions
- Not allowed: everything else
- Supports RDFS with "standard use" graphs (like all OWL profiles)

OWL 2 RL

- An (almost maximal) fragment of OWL 2 such that
 - automated inferencing is PTime-complete (consistency, satisfiability) of classes, subsumption, class membership checks)
 - automated inferencing is correct (sound & complete) if the given RDF graph satisfies certain requirements
 - otherwise the automated reasoning may be be sound but incomplete.
- Can operate directly on RDF triples in order to enrich instance data (materialization, forward chaining for facts)
- Automated inferencing can be implemented via a set of rules (using a rule engine that supports equality)

Agenda

- Recap OWL & Overview OWL 2
- The Description Logic SROIQ
- Inferencing with \mathcal{SROIQ}
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

What to do with OWL Full?

Goal of OWL 2 DL: make many OWL Full 1.0 ontologies interpretable as OWL DL (cf., e.g., punning)

What to do with OWL Full?

Goal of OWL 2 DL: make many OWL Full 1.0 ontologies interpretable as OWL DL (cf., e.g., punning)

- extension of OWL Full by OWL 2 features is required by a few practitioners
- allows to work on all kinds of RDF graphs
- despite undecidability: many FOL verification tools do not guarantee termination and are still useful
- alternative implementation techniques can be used, which might be faster (but do not guarantee termination)

- annotations do not have a semantics in the direct semantics (which is used for OWL DL), but they do in the RDF-based semantics (which is used for OWL Full)
- import commands are only parser commands in the direct semantics, but do have a presence as triple in the RDF-based Semantics
- in the RDF-based semantics, classes are individuals, that are endowed with an extension → semantic conditions are only applicable to those classes that have an individual representative

Example

- C(a)
- ullet query for all instances of the class C \sqcup D

Example

- C(a)
- ullet query for all instances of the class C \sqcup D
- RDF-based semantics: ∅, direct semantics: a

Example

- C(a)
- query for all instances of the class C

 □ D
- RDF-based semantics: Ø, direct semantics: a
- wunder the RDF-based semantics, we only have the guarantee that the union of the extensions of C and D do exist as subsets of the domain. however it is not ensured that an element exists which has this set as extension.
- → contrarily, in the direct semantics class names "directly" represent sets and not domain elements
- \rightarrow the answer coincides for both semantics after adding E \equiv C \sqcup D

Agenda

- Recap OWL & Overview OWL 2
- ullet The Description Logic \mathcal{SROIQ}
- Inferencing with \mathcal{SROIQ}
- OWL 2 DL
- OWL 2 Profiles
- OWL 2 Full
- Summary

Summary

OWL 2 as first extension of the OWL standard

- Standardized 27th Oct 2009
- Logical extension based on description logic SROIQ
- New modeling features, most notably complex RIAs, qualified number restrictions
- Non-logical extensions: punning, comments, datatypes, etc.
- Profiles with polynomial reasoning procedures