FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

RDFS Rule-based Reasoning

Sebastian Rudolph

Dresden, 16 April 2013
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview & XML</td>
<td>11 APR</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Introduction into RDF</td>
<td>11 APR</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>RDFS – Syntax & Intuition</td>
<td>16 APR</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 1</td>
<td>23 APR</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>RDFS – Semantics</td>
<td>25 APR</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>RDFS Rule-based Reasoning</td>
<td>25 APR</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>30 APR</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL – Syntax & Intuition</td>
<td>02 MAY</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>SPARQL – Semantics</td>
<td>02 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL Algebra</td>
<td>09 MAY</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>09 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>OWL – Syntax & Intuition</td>
<td>14 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>OWL & Description Logics</td>
<td>16 MAY</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>OWL 2</td>
<td>16 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>23 MAY</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Tableau I</td>
<td>23 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Tableau II</td>
<td>30 MAY</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 5</td>
<td>30 MAY</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Hypertableau I</td>
<td>4 JUN</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Hypertableau II</td>
<td>6 JUN</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 6</td>
<td>6 JUN</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL 1.1</td>
<td>18 JUN</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>SPARQL Entailment</td>
<td>20 JUN</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Tutorial 7</td>
<td>20 JUN</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>OWL & Rules</td>
<td>25 JUN</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Ontology Editing</td>
<td>27 JUL</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Ontology Engineering</td>
<td>27 JUL</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Tutorial 8</td>
<td>2 JUL</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Linked Data & Applications</td>
<td>4 JUL</td>
<td>DS5</td>
<td></td>
</tr>
<tr>
<td>Q&A Session</td>
<td>9 JUL</td>
<td>DS6</td>
<td></td>
</tr>
<tr>
<td>Q&A Session</td>
<td>11 JUL</td>
<td>DS5</td>
<td></td>
</tr>
</tbody>
</table>
RDF Schema
RDF Schema
Agenda

• Rules
 – Llyod-Topor Transformation

• Datalog
 – Characterizations of Datalog Program Semantics

• Evaluating Datalog Programs
 – Naïve Evaluation
 – Semi-naïve Evaluation

• Rules for RDFS via a Triple Predicate

• Rules for RDFS via Direct Translation
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Constituents of Rules

- basic elements of rules are atoms
 - ground atoms without free variables
 - non-ground atoms with free variables
What are Rules?

1. logic rules (fragments of predicate logic):
 - $F \rightarrow G$ equivalent to $\neg F \lor G$
 - logical extension of knowledge base \leadsto static
 - open world
 - declarative (describing)
What are Rules?

1. logic rules (fragments of predicate logic):
 - \(F \rightarrow G \) equivalent to \(\neg F \lor G \)
 - logical extension of knowledge base \(\leadsto \) static
 - open world
 - declarative (describing)

2. procedural rules (e.g. production rules):
 - “If X then Y else Z”
 - executable commands \(\leadsto \) dynamic
 - operational (meaning = effect caused when executed)
What are Rules?

1. logic rules (fragments of predicate logic):
 - $F \rightarrow G$ equivalent to $\neg F \lor G$
 - logical extension of knowledge base \Rightarrow static
 - open world
 - declarative (describing)

2. procedural rules (e.g. production rules):
 - “If X then Y else Z”
 - executable commands \Rightarrow dynamic
 - operational (meaning = effect caused when executed)

3. logic programming et al. (e.g. PROLOG, F-Logic):
 - $\text{man}(X) \leftarrow \text{person}(X) \text{ AND NOT woman}(X)$
 - approximation of logical semantics with operational aspects, built-ins are possible
 - often closed-world
 - semi-declarative
Predicate Logic as a Rule Language

• rules as implication formulae in predicate logic:

\[H \leftarrow A_1 \land A_2 \land \ldots \land A_n \]

- semantically equivalent to disjunction:
 \[H \lor \neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_n \]

• implications often written from right to left (← or :-)
• constants, variables and function symbols allowed
• quantifiers for variables are often omitted: free variables are often understood as universally quantified (i.e. rule is valid for all variable assignments)
Predicate Logic as a Rule Language

- rules as implication formulae in predicate logic:

\[
H \leftarrow A_1 \land A_2 \land \ldots \land A_n
\]

\(\text{head}\) \(\text{body}\)

\(\rightsquigarrow\) semantically equivalent to disjunction:

\[
H \lor \neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_n
\]

- implications often written from right to left (\(\leftarrow\) or : -)
- constants, variables and function symbols allowed
- quantifiers for variables are often omitted:
 free variables are often understood as universally quantified
 (i.e. rule is valid for all variable assignments)
Rules – Example

Example:

\[
\text{hasUncle}(x, z) \leftarrow \text{hasParent}(x, y) \land \text{hasBrother}(y, z)
\]

- we use short names (hasUncle) instead of IRIs like http://example.org/Example#hasUncle
- we use x,y,z for variables
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Lloyd-Topor Transformation

- multiple heads in atoms are usually understood as conjunction

\[H_1, H_2, \ldots, H_m \leftarrow A_1, A_2, \ldots, A_n \]

equivalent to

\[H_1 \leftarrow A_1, A_2, \ldots, A_n \]
\[H_2 \leftarrow A_1, A_2, \ldots, A_n \]
\[\ldots \]
\[H_m \leftarrow A_1, A_2, \ldots, A_n \]

- such a rewriting is also referred to as Lloyd-Topor transformation
Disjunctive Rules

- some rule formalisms allow for disjunction

\[\neg \rightarrow \text{several atoms in the head are conceived as alternatives:} \]

\[H_1, H_2, \ldots, H_m \leftarrow A_1, A_2, \ldots, A_n \]

equivalent to

\[H_1 \lor H_2 \lor \ldots \lor H_m \leftarrow A_1 \land A_2 \land \ldots \land A_n \]

equivalent to

\[H_1 \lor H_2 \lor \ldots \lor H_m \lor \neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_n \]

\[\neg \rightarrow (\text{not considered here}) \]
Kinds of Rules

names for “rules” in predicate logic:

- **clause**: disjunction of atomic and negated atomic propositions
 - Woman\((x) \lor Man(x) \leftarrow Person(x) \)

- **Horn clause**: clause with at most one non-negated atom
 - \(\leftarrow Man(x) \land Woman(x) \Rightarrow \text{“integrity constraints”} \)

- **definite clause**: Horn clause with exactly one non-negated atom
 - Father\((x) \leftarrow Man(x) \land hasChild(x, y) \)

- **fact**: clause containing just one non-negated atom
 - Woman\((gisela) \)
Kinds of Rules

names for “rules” in predicate logic:

- **clause**: disjunction of atomic and negated atomic propositions

 - $\text{Woman}(x) \lor \text{Man}(x) \leftarrow \text{Person}(x)$

- **Horn clause**: clause with at most one non-negated atom

 - $\leftarrow \text{Man}(x) \land \text{Woman}(x)$

 $\sim \sim$ “integrity constraints”
Kinds of Rules

names for “rules” in predicate logic:

- **clause**: disjunction of atomic and negated atomic propositions
 - $\text{Woman}(x) \lor \text{Man}(x) \leftarrow \text{Person}(x)$

- **Horn clause**: clause with at most one non-negated atom
 - $\leftarrow \text{Man}(x) \land \text{Woman}(x)$
 - “integrity constraints”

- **definite clause**: Horn clause with exactly one non-negated atom
 - $\text{Father}(x) \leftarrow \text{Man}(x) \land \text{hasChild}(x, y)$
Kinds of Rules

names for “rules” in predicate logic:

- **clause:** disjunction of atomic and negated atomic propositions

 - $\text{Woman}(x) \lor \text{Man}(x) \leftarrow \text{Person}(x)$

- **Horn clause:** clause with at most one non-negated atom

 - $\leftarrow \text{Man}(x) \land \text{Woman}(x)$

 \rightsquigarrow “integrity constraints”

- **definite clause:** Horn clause with exactly one non-negated atom

 - $\text{Father}(x) \leftarrow \text{Man}(x) \land \text{hasChild}(x, y)$

- **fact:** clause containing just one non-negated atom

 - $\text{Woman}(\text{gisela})$
Kinds of Rules

Rules may also contain function symbols:

\[
\begin{align*}
\text{hasUncle}(x, y) & \leftarrow \text{hasBrother}(\text{mother}(x), y) \\
\text{hasFather}(x, \text{father}(x)) & \leftarrow \text{Person}(x)
\end{align*}
\]

\[\Rightarrow\] new elements are dynamically generated
\[\Rightarrow\] not considered here
\[\Rightarrow\] see logic programming
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Datalog

Horn rules without function symbols \rightsquigarrow Datalog rules

- logical rule language, originally basis of deductive databases
- knowledge bases ("programs") consisting of Horn clauses without function symbols
- decidable
- efficient for big datasets, combined complexity ExpTime
- a lot of research done in the 1980s
Datalog as Extension of the Relation Calculus

Datalog can be conceived as Extension of the relation calculus by recursion

\[T(x, y) \leftarrow E(x, y) \]
\[T(x, y) \leftarrow E(x, z) \land T(z, y) \]

\[\Rightarrow \] computes the transitive closure (T) of the binary relation E, (e.g. if E contains the edges of a graph)

- a set of (ground) facts is also called an instance
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Semantics of Datalog

three different but equivalent ways to define the semantics:

- model-theoretically
- proof-theoretically
- via fixpoints
Model-theoretic Semantics of Datalog

rules are seen as logical sentences:

\[\forall x, y. (T(x, y) \leftarrow E(x, y)) \]
\[\forall x, y. (T(x, z) \leftarrow E(x, z) \land T(z, y)) \]

- not sufficient to uniquely determine a solution

\[\Rightarrow \text{interpretation of } T \text{ has to be minimal} \]
Model-theoretic Semantics of Datalog

in principle, a Datalog rule

$$\rho: R_1(u_1) \leftarrow R_2(u_2), \ldots, R_n(u_n)$$

represents the FOL sentence

$$\forall x_1, \ldots, x_n. (R_1(u_1) \leftarrow R_2(u_2) \land \ldots \land R_n(u_n))$$

- x_1, \ldots, x_n are the rule’s variables and \leftarrow is logical implication
- an instance I satisfies ρ, written $I \models \rho$, if and only if for every instantiation

$$R_1(\nu(u_1)) \leftarrow R_2(\nu(u_2)), \ldots, R_n(\nu(u_n))$$

we find $R_1(\nu(u_1))$ satisfied whenever $R_2(\nu(u_2)), \ldots, R_n(\nu(u_n))$ are satisfied
Model-theoretic Semantics of Datalog

- an instance I is a model of a Datalog program P, if I satisfies every rule in P (seen as a FOL formula)
- the semantics of P for the input I is the minimal model that contains I (if it exists)
- Question: does such a model always exist?
- If so, how can we construct it?
Proof-theoretic Semantics of Datalog

based on proofs for facts:

\[
given : \ E(a, b), E(b, c), E(c, d) \\
T(x, y) \leftarrow E(x, y) \quad (1) \\
T(x, y) \leftarrow E(x, z) \land T(z, y) \quad (2)
\]

(a) \ E(c, d) \text{ is a given fact} \\
(b) \ T(c, d) \text{ follows from (1) and (a)} \\
(c) \ E(b, c) \text{ is a given fact} \\
(d) \ T(b, d) \text{ follows from (c), (b) and (2)} \\
(e) \ldots
Proof-theoretic Semantics of Datalog

- programs can be seen as “factories” that produce all provable facts (deriving new facts from known ones in a bottom-up way by applying rules)
- alternative: top-down evaluation; starting from a to-be-proven fact, one looks for lemmata needed for the proof (Resolution)
Proof-theoretic Semantics of Datalog

a fact is provable, if it has a proof, represented by a proof-tree:

Definition

A proof tree for a fact A for an instance I and a Datalog program P is a labeled tree in which:

1. every node is labeled with a fact
2. every leaf is labeled with a fact from I
3. the root is labeled with A
4. for each internal leaf there exists an instantiation $A_1 \leftarrow A_2, \ldots, A_n$ of a rule in P, such that the node is labeled with A_1 and its children with A_2, \ldots, A_n
Proof-theoretic Semantics of Datalog

based on proofs for facts:

\[
\begin{align*}
given: & \quad E(a, b), E(b, c), E(c, d) \\
&T(x, y) \leftarrow E(x, y) \\
&T(x, y) \leftarrow E(x, z) \land T(z, y)
\end{align*}
\]

(a) \(E(c, d)\) is a given fact
(b) \(T(c, d)\) follows from (1) and (a)
(c) \(E(b, c)\) is a given fact
(d) \(T(b, d)\) follows from (c), (b) and (2)
(e) \ldots
Fixpoint Semantics

defines the semantics of a Datalog program as the solution of a fixpoint equation

- procedural definition (iteration until fixpoint reached)
- given an instance I and a Datalog program P, we call a fact A a direct consequence for P and I, if

 1. A is contained in I or
 2. $A \leftarrow A_1, \ldots, A_n$ is the instance of a rule from P, such that $A_1, \ldots, A_n \in I$

- then we can define a “direct consequence”-operator that computes, starting from an instance, all direct consequences

- similar to the bottom-up proof-theoretic semantics, but shorter proofs are always generated earlier than longer ones
Semantics of Rules

• compatible with other approaches that are based on FOL (e.g. description logics)
• conjunctions in rule heads and disjunction in bodies unnecessary
• other (non-monotonic) semantics definitions possible
 – well-founded semantics
 – stable model semantics
 – answer set semantics
• for Horn rules, these definitions do not differ
• production rules/procedural rules conceive the consequence of a rule as an action “If-then do”
 ⇝ not considered here
Extensional and Intensional Predicates

- from the database perspective (and opposed to logic programming) one distinguishes facts and rules
- within rules, we distinguish extensional and intensional predicates
- extensional predicates (also: extensional database – edb) are those not occurring in rule heads (in our example: relation E)
- intensional predicates (also: intensional database – idb) are those occurring in at least one head of a rule (in our example: relation T)
- semantics of a datalog program can be understood as a mapping of given instances over edb predicates to instances of idb predicates
Datalog in Practice

Datalog in Practice:
- several implementations available
- some adaptations for Semantic Web: XSD types, URIs (e.g. IRIS)

Extensions of Datalog:
- disjunctive Datalog allows for disjunctions in rule heads
- non-monotonic negation (no FOL semantics)
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Evaluating Datalog Programs

- top-down or bottom-up evaluation
- direct evaluation versus compilation into an efficient program
- here:
 1. Naïve bottom-up Evaluierung
 2. Semi-naïve bottom-up Evaluierung
Reverse-Same-Generation

given Datalog program:

\[
\text{rsg}(x, y) \leftarrow \text{flat}(x, y)
\]
\[
\text{rsg}(x, y) \leftarrow \text{up}(x, x_1), \text{rsg}(y_1, x_1), \text{down}(y_1, y)
\]

given data:

<table>
<thead>
<tr>
<th>up</th>
<th>flat</th>
<th>down</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g</td>
<td>l</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>a</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>f</td>
<td>n</td>
<td>f</td>
</tr>
<tr>
<td>m</td>
<td>o</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>p</td>
<td>b</td>
</tr>
<tr>
<td>n</td>
<td>m</td>
<td>c</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>o</td>
<td></td>
<td>k</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$rsg(x, y) \leftarrow flat(x, y)$
$rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y)$
Reverse-Same-Generation – Visualization

\[
\text{rsg}(x, y) \leftarrow \text{flat}(x, y)
\]
\[
\text{rsg}(x, y) \leftarrow \text{up}(x, x_1), \text{rsg}(y_1, x_1), \text{down}(y_1, y)
\]
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]
reverse-same-generation – visualization

\[
\text{\textit{rsg}}(x, y) \leftarrow \text{\textit{flat}}(x, y)
\]

\[
\text{\textit{rsg}}(x, y) \leftarrow \text{\textit{up}}(x, x_1), \text{\textit{rsg}}(y_1, x_1), \text{\textit{down}}(y_1, y)
\]
\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]
rsg(x, y) ← flat(x, y)

rsg(x, y) ← up(x, x_1), rsg(y_1, x_1), down(y_1, y)
Reverse-Same-Generation – Visualization

\[
\text{rsg}(x, y) \leftarrow \text{flat}(x, y) \\
\text{rsg}(x, y) \leftarrow \text{up}(x, x_1), \text{rsg}(y_1, x_1), \text{down}(y_1, y)
\]
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]

TU Dresden, 16 April 2013 Foundations of Semantic Web Technologies
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow \text{flat}(x, y) \]
\[rsg(x, y) \leftarrow \text{up}(x, x_1), rsg(y_1, x_1), \text{down}(y_1, y) \]
$rsg(x, y) \leftarrow flat(x, y)$

$rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y)$
Reverse-Same-Generation – Visualization

\[rsg(x, y) \leftarrow flat(x, y) \]
\[rsg(x, y) \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y) \]
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Naïve Algorithm for Computing rsg

\[
\begin{align*}
 rsg(x, y) & \leftarrow flat(x, y) \\
 rsg(x, y) & \leftarrow up(x, x_1), rsg(y_1, x_1), down(y_1, y)
\end{align*}
\]

\textbf{Algorithm 1 RSG}

\[
\begin{align*}
 rsg & := \emptyset \\
 \text{repeat} & \\
 \quad rsg & := rsg \cup flat \cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg \times down))) \\
 \text{until} & \text{ fixpoint reached}
\end{align*}
\]

\[
\begin{align*}
 rsg_{i+1} & := rsg_{i} \cup flat \cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg \times down)))
\end{align*}
\]

Level 0: \(\emptyset\)
Level 1: \{(g,f), (m,n), (m,o), (p,m)\}
Level 2: \{Level 1\} \cup \{(a,b), (h,f), (i,f), (j,f), (f,k)\}
Level 3: \{Level 2\} \cup \{(a,c), (a,d)\}
Level 4: \{Level 3\}
Naïve Algorithm for Evaluating Datalog Programs

- redundant computations (all elements of the preceding level are taken into account)
- on each level, all elements of the preceding level are re-computed
- monotone (rsg is extended more and more)
Agenda

● Rules
 – Llyod-Topor Transformation
● Datalog
 – Characterizations of Datalog Program Semantics
● Evaluating Datalog Programs
 – Naïve Evaluation
 – Semi-naïve Evaluation
● Rules for RDFS via a Triple Predicate
● Rules for RDFS via Direct Translation
Semi-Naïve Algorithm for Computing \(rsg \)

focus on facts that have been newly computed on the preceding level

Algorithm 2 \(RSG' \)

\[
\begin{align*}
\Delta_{rsg}^1(x, y) &:= flat(x, y) \\
\Delta_{rsg}^{i+1}(x, y) &:= up(x, x_1), \Delta_{rsg}^i(y_1, x_1), down(y_1, y)
\end{align*}
\]

- not recursive
- no Datalog program (set of rules is infinite)
- for each input \(I \) and \(\Delta_{rsg}^i \) (the newly computed instances on level \(i \)),

\[
rs_{g_{i+1}} - rs_{g_i} \subseteq \Delta_{rsg}^{i+1} \subseteq rs_{g_{i+1}}
\]

- \(RSG(I)(rs) = \bigcup_{1 \leq i} (\Delta_{rsg}^i) \)
- less redundancy
An Improvement

But: $\Delta_{rsg}^{i+1} \neq rsg^{i+1} - rsg^i$

e.g.: $(g, f) \in \Delta_{rsg}^2, (g, f) \notin rsg^2 - rsg^1$

$\leadsto rsg(g, f) \in rsg^1$, because $flat(g, f)$,
$\leadsto rsg(g, f) \in \Delta_{rsg}^2$, because $up(g, n), rsg(m, f), down(m, f)$

- idea: use $rsg^i - rsg^{i-1}$ instead of Δ_{rsg}^i in the second “rule” of RSG'

Algorithm 3 RSG''

$\Delta_{rsg}^1 (x, y) := flat(x, y)$
$rsg^1 := \Delta_{rsg}^1$

$\text{tmp}_{rsg}^{i+1} (x, y) := up(x, x_1), \Delta_{rsg}^i (y_1, x_1), down(y_1, y)$

$\Delta_{rsg}^{i+1} (x, y) := \text{tmp}_{rsg}^{i+1} - rsg^i$

$rsg^{i+1} := rsg^i \cup \Delta_{rsg}^{i+1}$
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Datalog Rules for RDFS (no Datatypes & Literals)

problem: no strict separation between data and schema (predicates)

\[
\begin{align*}
\text{a rdfs:domain x . u a y .} \\
\text{u rdf:type x .} \quad \text{rdfs2}
\end{align*}
\]

\[
\text{rdf:type}(u, x) \leftarrow \text{rdfs:domain}(a, x) \land a(u, y)
\]

- solution: use a triple predicate
Datalog Rules for RDFS (no Datatypes & Literals)

problem: no strict separation between data and schema (predicates)

\[
\begin{align*}
\text{a} \ rdfs:domain \ & x . \ u \ a \ y . \\
\text{u} \ rdf:type \ & x . \\
\end{align*}
\]

\[
\text{rdf: } type(u, x) \leftarrow \text{rdfs: } domain(a, x) \land a(u, y)
\]

- solution: use a triple predicate
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation
Datalog Rules for RDFS (no Datatypes & Literals)

\[
\begin{array}{c}
\text{rdfs2} \\
\hline
\text{a rdfs:domain x . u a y .} \\
\text{u rdf:type x .}
\end{array}
\]

\[
\text{Triple}(u, \text{rdf: type,} x) \leftarrow \text{Triple}(a, \text{rdfs: domain,} x) \land \text{Triple}(u, a, y)
\]

- usage of just one predicate reduces optimization potential
- all (newly derived) triples are potential candidates for any rule
- rules change when the data changes, no separation between schema and data
Datalog Rules for RDFS (no Datatypes & Literals)

• solution 2: introduce specific predicates

\[
\begin{align*}
& a \text{ rdfs:domain } x \ . \ u \ a \ y \ . \\
& u \text{ rdf:type } x . \\
& \text{type}(u, x) \leftarrow \text{domain}(a, x) \land \text{rel}(u, a, y)
\end{align*}
\]
Axiomatic Triples as Facts

type(rdf:type, rdf:Property)
type(rdf:subject, rdf:Property)
type(rdf:predicate, rdf:Property)
type(rdf:object, rdf:Property)
type(rdf:property, rdf:Property)
type(rdf:first, rdf:Property)
type(rdf:rest, rdf:Property)
type(rdf:value, rdf:Property)
type(rdf:_1, rdf:Property)
type(rdf:_2, rdf:Property)
type(..., rdf:Property)
type(rdf:nil, rdf:List)

...(plus RDFS axiomatic triples)
Axiomatic Triples as Facts

\[
\begin{align*}
\text{type} & (\text{rdf:type, rdf:Property}) \\
\text{type} & (\text{rdf:subject, rdf:Property}) \\
\text{type} & (\text{rdf:predicate, rdf:Property}) \\
\text{type} & (\text{rdf:object, rdf:Property}) \\
\text{type} & (\text{rdf:first, rdf:Property}) \\
\text{type} & (\text{rdf:rest, rdf:Property}) \\
\text{type} & (\text{rdf:value, rdf:Property}) \\
\text{type} & (\text{rdf:1, rdf:Property}) \\
\text{type} & (\text{rdf:2, rdf:Property}) \\
\text{type} & (\ldots, \text{rdf:Property}) \\
\text{type} & (\text{rdf:nil, rdf:List}) \\
\ldots & (\text{plus RDFS axiomatic triples})
\end{align*}
\]
Axiomatic Triples as Facts

\[
\text{type(} \text{rdf:type, rdf:Property)}
\]
\[
\text{type(} \text{rdf:subject, rdf:Property)}
\]
\[
\text{type(} \text{rdf:predicate, rdf:Property)}
\]
\[
\text{type(} \text{rdf:object, rdf:Property)}
\]
\[
\text{type(} \text{rdf:first, rdf:Property)}
\]
\[
\text{type(} \text{rdf:rest, rdf:Property)}
\]
\[
\text{type(} \text{rdf:value, rdf:Property)}
\]
\[
\text{type(} \text{rdf:_1, rdf:Property)}
\]
\[
\text{type(} \text{rdf:_2, rdf:Property)}
\]
\[
\text{type(} \ldots, \text{rdf:Property)}
\]
\[
\text{type(} \text{rdf:nil, rdf:List)}
\]
\[
\ldots \text{(plus RDFS axiomatic triples)}
\]

\[\rightsquigarrow\text{ only needed for those } \text{rdf:i} \text{ that occur in the graphs } G_1 \text{ and } G_2, \text{ if } G_1 \models ? G_2 \text{ is to be decided}\]
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
\text{rdf1} & : \\
\forall u, a, y . & \iff \ \text{type}(a, \text{rdf:Property}) \leftarrow \text{rel}(u, a, y)
\end{align*}
\]

- \(a, b\): IRIs
- \(x, y\): IRI, blank node or literal
- \(u, v\): IRI or blank node
- \(l\): literal
- \(_n\): blank nodes
RDF Entailment Rules (no Datatypes & Literals)

\[\begin{align*}
 \text{u a y} & \quad \text{rdf1} \\
 \text{a rdf:type rdf:Property} & \quad \text{∽} \quad \text{type(a, rdf:Property) ← rel(u, a, y)}
\end{align*} \]

\[\begin{align*}
 \text{a rdfs:domain x . u a y .} & \quad \text{rdfs2} \\
 \text{u rdf:type x .} & \quad \text{∽} \quad \text{type(u, x) ← domain(a, x) \land rel(u, a, y)}
\end{align*} \]

\(a, b \) IRIs \quad \(x, y \) IRI, blank node or literal
\(u, v \) IRI or blank node \quad \text{literal}
\(n \) blank nodes

TU Dresden, 16 April 2013
Foundations of Semantic Web Technologies
RDF Entailment Rules (no Datatypes & Literals)

\[u \ a \ y \]
\[a \ \text{rdf:type} \text{ rdf:Property} \]
\[\leadsto \text{type}(a, \text{rdf:Property}) \leftarrow \text{rel}(u, a, y) \]

\[a \ \text{rdfs:domain} \ x . \ u \ a \ y . \]
\[u \ \text{rdf:type} \ x . \]
\[\leadsto \text{type}(u, x) \leftarrow \text{domain}(a, x) \land \text{rel}(u, a, y) \]

\[a \ \text{rdfs:range} \ x . \ u \ a \ v . \]
\[v \ \text{rdf:type} \ x . \]
\[\leadsto \text{type}(v, x) \leftarrow \text{range}(a, x) \land \text{rel}(u, a, v) \]

\[a, b \text{ IRIs} \]
\[x, y \text{ IRI, blank node or literal} \]
\[u, v \text{ IRI or blank node} \]
\[l \text{ literal} \]
\[:n \text{ blank nodes} \]

TU Dresden, 16 April 2013 Foundations of Semantic Web Technologies
RDF Entailment Rules (no Datatypes & Literals)

\[
\frac{u \ a \ y}{\text{a rdf:type rdf:Property}} \quad \text{rdf1}
\]
\[\leadsto \quad \text{type(a, rdf:Property) } \leftarrow \text{rel}(u, a, y)\]

\[
\frac{a \ \text{rdfs:domain} \ x \ . \ u \ a \ y}{\text{u rdf:type x}} \quad \text{rdfs2}
\]
\[\leadsto \quad \text{type}(u, x) \leftarrow \text{domain}(a, x) \land \text{rel}(u, a, y)\]

\[
\frac{a \ \text{rdfs:range} \ x \ . \ u \ a \ v}{\text{v rdf:type x}} \quad \text{rdfs3}
\]
\[\leadsto \quad \text{type}(v, x) \leftarrow \text{range}(a, x) \land \text{rel}(u, a, v)\]

\[
\frac{u \ a \ x}{\text{u rdf:type rdfs:Resource}} \quad \text{rdfs4a}
\]
\[\leadsto \quad \text{type}(u, \text{rdfs:Resource}) \leftarrow \text{rel}(u, a, x)\]

\begin{itemize}
 \item \text{a, b IRI}s
 \item \text{x, y IRI, blank node or literal}
 \item \text{u, v IRI or blank node, l literal}
 \item \text{_:n blank nodes}
\end{itemize}
RDF Entailment Rules (no Datatypes & Literals)

\[
\frac{u \ a \ v \ . \ }{v \ rdf:type \ rdfs:Resource \ . \ rdfs4b} \\
\leadsto \ type(v, \ rdfs:Resource) \leftarrow \ rel(u, \ a, \ v)
\]

\[a, \ b \ IRI \quad x, \ y \ IRI, \ blank \ node \ or \ literal \]
\[u, \ v \ IRI \ or \ blank \ node \quad _ :: n \ blank \ nodes\]

TU Dresden, 16 April 2013 Foundations of Semantic Web Technologies
RDF Entailment Rules (no Datatypes & Literals)

\[u \ a \ v \ . \vspace{10pt}
\]
\[\forall v \ \text{rdf:type} \ \text{rdfs:Resource} \ \rightarrow \ \text{type}(v, \text{rdfs:Resource}) \leftarrow \text{rel}(u, a, v) \]

\[u \ \text{rdfs:subPropertyOf} \ v \ . \ v \ \text{rdfs:subPropertyOf} \ x \ . \ u \ \text{rdfs:subPropertyOf} \ x \ . \vspace{10pt}
\]
\[\forall u \ \text{rdfs:subPropertyOf} \ v \ . \ v \ \text{rdfs:subPropertyOf} \ x \ . \ \text{rdfs5} \rightarrow \ \text{subPropertyOf}(u, x) \leftarrow \ \text{subPropertyOf}(u, v) \land \ \text{subPropertyOf}(v, x) \]

\[a, b \ \text{IRIs} \quad x, y \ \text{IRI, blank node or literal} \quad u, v \ \text{IRI or blank node} \ \perp \ \text{literal} \ \perp : \ \text{n blank nodes} \]
RDF Entailment Rules (no Datatypes & Literals)

\[\begin{align*}
& \quad u \ a \ v . \\
& \quad v \ rdf: type \ rdfs: Resource . \quad \text{rdfs4b} \\
& \quad \Rightarrow \ type(v, \ rdfs: Resource) \leftarrow rel(u, a, v) \\
& \quad u \ rdfs: subPropertyOf v . \quad v \ rdfs: subPropertyOf x . \quad \text{rdfs5} \\
& \quad \Rightarrow \ subPropertyOf(u, x) \leftarrow subPropertyOf(u, v) \land subPropertyOf(v, x) \\
& \quad u \ rdf: type \ rdf: Property . \quad \text{rdfs6} \\
& \quad u \ rdfs: subPropertyOf u . \\
& \quad \Rightarrow \ subPropertyOf(u, u) \leftarrow type(u, \ rdf: Property) \\
\end{align*} \]

\(a, b \) IRIs \quad \(x, y \) IRI, blank node or literal
\(u, v \) IRI or blank node \quad \text{literal} \quad :n \) blank nodes
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
 u & \ a & \ v . \\
 v & \text{rdf:type} & \text{rdfs:Resource} . \\
 \leadsto & \text{type}(v, \text{rdfs:Resource}) & \leftarrow \text{rel}(u, a, v)
\end{align*}
\]

\[
\begin{align*}
 u & \text{rdfs:subPropertyOf} & v . \\
 v & \text{rdfs:subPropertyOf} & x . \\
 u & \text{rdfs:subPropertyOf} & x . \\
 \leadsto & \text{subPropertyOf}(u, x) & \leftarrow \text{subPropertyOf}(u, v) \land \text{subPropertyOf}(v, x)
\end{align*}
\]

\[
\begin{align*}
 u & \text{rdf:type} & \text{rdf:Property} . \\
 u & \text{rdfs:subPropertyOf} & u . \\
 \leadsto & \text{subPropertyOf}(u, u) & \leftarrow \text{type}(u, \text{rdf:Property})
\end{align*}
\]

\[
\begin{align*}
 a & \text{rdfs:subPropertyOf} & b . \\
 u & a & y . \\
 u & b & y . \\
 \leadsto & \text{rel}(u, b, y) & \leftarrow \text{subPropertyOf}(a, b) \land \text{rel}(u, a, y)
\end{align*}
\]

| a, b IRI | x, y IRI, blank node or literal | u, v IRI or blank node | l literal | n blank nodes |

TU Dresden, 16 April 2013 Foundations of Semantic Web Technologies
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
& \quad \text{u rdf:type rdfs:Class .} \\
& \quad \text{u rdf:subClassOf rdfs:Resource .} \\
& \quad \leadsto \text{subClassOf(u, rdfs:Resource) } \leftarrow \text{type(u, rdfs:Class)}
\end{align*}
\]
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
& u \text{ rdf:type rdfs:Class } \quad \text{rdfs8} \\
& u \text{ rdf:subClassOf rdfs:Resource } \quad \text{rdfs8} \\
& \leadsto \text{subClassOf}(u, \text{rdfs:Resource}) \iff \text{type}(u, \text{rdfs:Class}) \\
\end{align*}
\]

\[
\begin{align*}
& u \text{ rdfs:subClassOf } x \quad v \text{ rdf:type } u \quad \text{rdfs9} \\
& v \text{ rdf:type } x \\
& \leadsto \text{type}(v, x) \iff \text{subClassOf}(u, x) \land \text{type}(v, x)
\end{align*}
\]

\[
\begin{align*}
& a, b \text{ IRIs} \\
& x, y \text{ IRI, blank node or literal} \\
& u, v \text{ IRI or blank node} \\
& l \text{ literal} \\
& _n \text{ blank nodes}
\end{align*}
\]
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
& u \text{ rdf:type rdfs:Class . rdfs8} \\
& u \text{ rdf:subClassOf rdfs:Resource . rdfs8} \\
& \rightarrow \text{ subClassOf}(u, \text{rdfs:Resource}) \leftarrow \text{type}(u, \text{rdfs:Class}) \\

& u \text{ rdfs:subClassOf } x . v \text{ rdf:type } u . \text{ rdfs9} \\
& v \text{ rdf:type } x . \text{ rdfs9} \\
& \rightarrow \text{type}(v, x) \leftarrow \text{subClassOf}(u, x) \land \text{type}(v, x) \\

& u \text{ rdf:type rdfs:Class . rdfs10} \\
& u \text{ rdfs:subClassOf } u . \text{ rdfs10} \\
& \rightarrow \text{subClassOf}(u, u) \leftarrow \text{type}(u, \text{rdfs:Class})
\end{align*}
\]

a, b IRIs

x, y IRI, blank node or literal

u, v IRI or blank node

l literal

::n blank nodes
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
\text{rdfs8} & \quad \text{u rdf:type rdfs:Class . } \\
\text{rdfs9} & \quad \text{u rdf:subClassOf rdfs:Resource . } \\
\rightarrow & \quad \text{subClassOf(u, rdfs:Resource) } \iff \text{type(u, rdfs:Class)} \\
\text{rdfs10} & \quad \text{u rdfs:subClassOf x . v rdf:type u . } \\
\text{rdfs11} & \quad \text{v rdf:type x . } \\
\rightarrow & \quad \text{type(v, x) } \iff \text{subClassOf(u, x) } \land \text{type(v, x)} \\
\end{align*}
\]

TU Dresden, 16 April 2013 Foundations of Semantic Web Technologies
RDF Entailment Rules (no Datatypes & Literals)

\[
\begin{align*}
& u \text{ rdf:type rdfs:ContainerMembershipProperty} . \\
& u \text{ rdfs:subPropertyOf rdfs:member} . \\
& \leadsto \text{subPropertyOf}(u, \text{rdfs:member}) \leftarrow \text{type}(u, \text{rdfs:ContainerMembershipProperty}) \\
\end{align*}
\]

\[
\begin{align*}
& a, b \text{ IRI} \quad x, y \text{ IRI, blank node or literal} \\
& u, v \text{ IRI or blank node} \quad l \text{ literal} \quad :n \text{ blank nodes}
\end{align*}
\]
Agenda

- Rules
 - Llyod-Topor Transformation
- Datalog
 - Characterizations of Datalog Program Semantics
- Evaluating Datalog Programs
 - Naïve Evaluation
 - Semi-naïve Evaluation
- Rules for RDFS via a Triple Predicate
- Rules for RDFS via Direct Translation