Lecture 4 Local Consistency

Outline

- Introduce several local consistency notions:
 - node consistency
 - arc consistency, hyper-arc consistency, directional arc consistency
 - path consistency, directional path consistency
 - *k*-consistency, strong *k*-consistency
 - relational consistency
- Use the proof theoretic framework to characterize these notions

Node Consistency

- CSP is node consistent if for every variable x every unary constraint on x coincides with the domain of x.
- Examples:

Assume C contains no unary constraints.

IN - natural numbers

 \mathbb{Z} - integers

-
$$\langle \mathcal{C}, x_1 \geq 0, ..., x_n \geq 0 ; x_1 \in \mathbb{N}, ..., x_n \in \mathbb{N} \rangle$$
 is node consistent

-
$$\langle \mathcal{C}, x_1 \geq 0, ..., x_n \geq 0 \; ; x_1 \in \mathbb{N}, ..., x_{n-1} \in \mathbb{N}, x_n \in \mathbb{Z} \rangle$$
 is not node consistent

Arc Consistency

- A constraint C on the variables x, y with the domains X and Y (so $C \subseteq X \times Y$) is arc consistent if
 - \forall a ∈ X∃b ∈ Y (a,b) ∈ C
 - \forall *b* ∈ Y∃a ∈ X (a,b) ∈ C
- A CSP is arc consistent if all its binary constraints are
- Examples:
 - $\langle x < y \; ; \; x \in [2..6], \; y \in [3..7] \rangle$ is arc consistent
 - $\langle x < y \; ; \; x \in [2..7], \; y \in [3..7] \rangle$ is not arc consistent

Status of Arc Consistency

Arc consistency does not imply consistency!

Example:
$$\langle x = y, x \neq y ; x \in \{a,b\}, y \in \{a,b\} \rangle$$

Consistency does not imply arc consistency!

Example:
$$\langle x = y ; x \in \{a,b\}, y \in \{a\} \rangle$$

For some CSP's arc consistency does imply consistency.
 (A general result later.)

Proof Rules for Arc Consistency

ARC CONSISTENCY 1

$$\frac{C; x \in D_x, y \in D_y}{C; x \in D'_x, y \in D_y}$$

where
$$D'_x := \{a \in D_x \mid \exists b \in D_y (a,b) \in C\}$$

ARC CONSISTENCY 2

$$\frac{C; x \in D_x, y \in D_y}{C; x \in D_x, y \in D_y}$$

where
$$D'_{y} := \{b \in D_{y} \mid \exists a \in D_{x} (a,b) \in C\}$$

A CSP is arc consistent iff it is closed under the applications of the ARC CONSISTENCY rules 1 and 2.

Intuition and Example

The ARC CONSISTENCY rules

Example

Example, ctd

 $a: C_{1,2}, b: C_{1,3}, c: C_{4,2}, d: C_{4,5}, e: C_{4,2}, f: C_{7,2}, g: C_{7,5}, h: C_{8,2}, i: C_{8,6}, j: C_{8,3}$

Hyper-arc Consistency

• A constraint C on the variables $x_1, ..., x_n$ with the domains $D_1, ..., D_n$ is hyper-arc consistent if

$$\forall i \in [1..n] \forall a \in D_i \exists d \in C \ a = d[x_i]$$

- CSP is hyper-arc consistent if all its constraints are
- Examples:
 - $\langle x \wedge y = z ; x = 1, y \in \{0,1\}, z \in \{0,1\} \rangle$ is hyper-arc consistent
 - $\langle x \wedge y = z ; x \in \{0,1\}, y \in \{0,1\}, z = 1 \rangle$ is not hyper-arc consistent

Characterization of Hyper-arc Consistency

HYPER-ARC CONSISTENCY

$$\frac{\langle C; x_1 \in D_1, \dots, x_n \in D_n \rangle}{\langle C; \dots, x_i \in D'_y, \dots \rangle}$$

- where C a constraint on the variables $x_1, ..., x_n, i \in [1..n]$
- $-D'_{i} := \{a \in D_{i} \mid \exists d \in C \ a = d[x_{i}]\}$

A CSP is hyper-arc consistent iff it is closed under the applications of the HYPER-ARC CONSISTENCY rule.

Directional Arc Consistency

Assume a linear ordering ≺ on the variables

- A constraint C on x, y with the domains D_x and D_y is directionally arc consistent w.r.t. \prec if
 - \forall a ∈ D_x \exists b ∈ D_y (a,b) ∈ C, provided $x \prec y$
 - \forall b ∈ D_y \exists a ∈ D_x (a,b) ∈ C, provided $y \prec x$

Example:

$$\langle x < y \; ; \; x \in [2..7], \; y \in [3..7] \rangle$$

- not arc consistent
- directionally arc consistent w.r.t. y ≺ x
- not directionally arc consistent w.r.t. x ≺ y

Characterization of Directional Arc Consistency

 $\mathcal{P}_{\prec} \coloneqq \mathcal{P}$ with the variables reordered w.r.t. \prec

Example:

Take
$$P := \langle x < y, y \neq z ; x \in [2..10], y \in [3..7], z \in [3..6] \rangle$$

and $y \prec x \prec z$

Then
$$\mathcal{P}_{\prec} := \langle y > x, y \neq z ; y \in [3..7], x \in [2..10], z \in [3..6] \rangle$$

A CSP \mathcal{P} is directionally arc consistent w.r.t. \prec iff the CSP \mathcal{P}_{\prec} is closed under the applications of the ARC CONSISTENCY rule 1.

Limitations of Arc Consistency

Example:

$$\langle x < y, y < z, z < x ; x, y, z \in [1..100000] \rangle$$
 is inconsistent

Applying ARC CONSISTENCY rule 1 we get

$$\langle x < y, y < z, z < x ; x \in [1..99999], y, z \in [1..100000] \rangle$$
 etc

Disadvantages:

- Large number of steps
- Length depends on the size of the domains

Direct proof: use transitivity of <

Path consistency generalizes this form of reasoning to arbitrary binary relations.

Normalized CSP's

A CSP \mathcal{P} is normalized if for each pair x, y of its variables at most one constraint on x, y exists.

Denote by $C_{x,y}$ the unique constraint on x, y if it exists and otherwise the "universal" relation on x, y.

Consider binary relations *R* and *S*:

transposition of R:

$$R^T := \{(b,a) \mid (a,b) \in R\}$$

composition of R and S:

$$R \cdot S := \{(a,b) \mid \exists c \ ((a,c) \in R, \ (c,b) \in S)\}$$

Path Consistency

A normalized CSP is path consistent if for each subset $\{x,y,z\}$ of its variables $C_{x,z} \subseteq C_{x,v} \cdot C_{v,z}$

Note: A normalized CSP is path consistent iff for each subsequence x, y, z of its variables

$$C_{x,y} \subseteq C_{x,z} \cdot C_{y,z}^{T}$$

$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$

$$C_{y,z} \subseteq C_{x,y}^{T} \cdot C_{x,z}$$

Intuition:

Path Consistency: Example 1

 $\langle x < y, y < z, x < z ; x \in [0..4], y \in [1..5], z \in [6..10] \rangle$ path consistent

$$C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5]\}$$
 $C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [6..10]\}$
 $C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [6..10]\}$
 \Rightarrow the 3 conditions (cf. previous slide) are satisfied

Path Consistency: Example 2

 $\langle x < y, y < z, x < z ; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$ not path consistent

$$C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10]\}$$

But for $4 \in [0..4]$ and $5 \in [5..10]$ there is no $y \in [1..5]$ s.t. 4 < y and y < 5.

Characterization of Path Consistency

PATH CONSISTENCY 1

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C'_{x,y}, C_{x,z}, C_{y,z}} \quad \text{where } C'_{x,y} \coloneqq C_{x,y} \cap C_{x,z} \cdot C^{T}_{y,z}$$

PATH CONSISTENCY 2

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C_{x,y}, C'_{x,z}, C_{y,z}} \quad \text{where } C'_{x,z} \coloneqq C_{x,z} \cap C_{x,y} \cdot C_{y,z}$$

PATH CONSISTENCY 3

$$\frac{C_{x,y}, C_{x,z}, C_{y,z}}{C_{x,y}, C_{x,z}, C'_{y,z}} \quad \text{where } C'_{y,z} \coloneqq C_{y,z} \cap C^{T}_{x,y} \cdot C_{x,z}$$

A normalized CSP is path consistent iff it is closed under the applications of the PATH CONSISTENCY rules 1, 2, and 3.

m-Path Consistency

A normalized CSP is *m*-path consistent ($m \ge 2$) if for each subset { $x_1, ..., x_{m+1}$ } of its variables

$$C_{x_1,x_{m+1}} \subseteq C_{x_1,x_2} \cdot C_{x_2,x_3} \cdot \dots \cdot C_{x_m,x_{m+1}}$$

A normalized CSP is m-path consistent if for each subset $\{x_1, ..., x_{m+1}\}$ of its variables

if
$$(a_1, a_{m+1}) \in C_{x_1, x_{m+1}}$$
, then for some $a_2, ..., a_m$: $(a_i, a_{i+1}) \in C_{x_i, x_{i+1}}$ for all $i \in [1..m]$

 a_2 , ..., a_m : path connecting a_1 and a_{m+1}

Theorem

Every normalized, path consistent CSP is m-path consistent for each $m \ge 2$

Local Consistency

Proof: Induction on *m*

Directional Path Consistency

Assume a linear ordering \prec on the variables. A normalized CSP is directionally path consistent w.r.t. \prec if for each subset $\{x, y, z\}$ of its variables

$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$
, provided $x, z \prec y$

A normalized CSP is directionally path consistent w.r.t. \prec iff for each subsequence x, y, z of its variables

$$C_{x,y} \subseteq C_{x,z} \cdot C_{y,z}^T$$
, provided $x, y < z$

$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$
, provided $x, z \prec y$

$$C_{y,z} \subseteq C_{x,y}^T \cdot C_{x,z}$$
, provided $y, z \prec x$

Examples

Recall $\langle x < y, y < z, x < z \; ; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$ $C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5] \}$ $C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10] \}$ $C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [5..10] \}$

- It is directionally path consistent w.r.t. the ordering ≺ in which x, y ≺ z.
 Indeed, for every pair (a,b) ∈ C_{x,y} there exists z ∈ [5..10] such that a < z and b < z.</p>
- It is directionally path consistent w.r.t. the ordering \prec in which y, $z \prec x$.

 Indeed, for every pair $(b,c) \in C_{y,z}$ there exists $x \in [0..4]$ such that x < b and x < c.
- It is not directionally path consistent w.r.t. the ordering \prec in which x, $z \prec y$.

Characterization of Directional Path Consistency

A normalized CSP \mathcal{P} is directionally path consistent w.r.t. \prec iff \mathcal{P}_{\prec} is closed under the applications of the PATH CONSISTENCY rule 1.

Instantiations

Fix a CSP \mathcal{P} .

- Instantiation: function on a subset of the variables of \mathcal{P} . It assigns to each variable a value from its domain. Notation: $\{(x_1,d_1), ..., (x_k,d_k)\}$
- C: a constraint on $x_1, ..., x_k$ Instantiation $\{(x_1, d_1), ..., (x_k, d_k)\}$ satisfies C if $(d_1, ..., d_k) \in C$
- I: instantiation with a domain X, Y ⊆ X
 I | Y: restriction of I to Y
- Instantiation I with domain X is consistent if for every constraint C of P on some Y with $Y \subseteq X$: $I \mid Y$ satisfies C.
- Consistent instantiation is k-consistent if its domain consists of k variables.
- An instantiation is a solution to \mathcal{P} if it is consistent and defined on all variables of \mathcal{P} .

Example

Consider $\langle x < y, y < z, x < z ; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$ Let $I := \{(x,0), (y,5), (z,6)\}$

- $I \mid \{x,y\} = \{(x,0), (y,5)\}$; it satisfies x < y
- $I \mid \{x,z\} = \{(x,0), (z,6)\}$; it satisfies x < z
- $I \mid \{y,z\} = \{(y,5), (z,6)\}$; it satisfies y < z
- So I is a 3-consistent instantiation. It is a solution to this CSP.

k-Consistency

- CSP is 1-consistent if for every variable x with a domain D each unary constraint on x equals D
- CSP is k-consistent, k > 1, if every (k 1)-consistent instantiation can be extended to a k-consistent instantiation no matter which new variable is chosen.

1-consistency aka node consistency

Note:

- A node consistent CSP is arc consistent iff it is 2-consistent
- A node consistent, normalized, binary CSP is path consistent iff it is 3-consistent

k-Consistency, ctd

Fix k > 1

- There exists a CSP that is (k-1)-consistent but not k-consistent
- (ii) There exists a CSP that is not (k-1)-consistent but is k-consistent

Proof of (i) for k = 3:

Strong *k*-Consistency

CSP strongly *k*-consistent, $k \ge 1$, if it is *i*-consistent for every $i \in [1..k]$

Theorem

Take a CSP with k variables, $k \ge 1$, s.t.

- at least one domain is non-empty
- it is strongly k-consistent

Then it is consistent.

Proof: Construct a solution by induction: Prove that

- (i) there exists a 1-consistent instantiation
- (ii) for every $i \in [2..k]$ each (i 1)-consistent instantiation can be extended to an i-consistent instantiation

Disadvantage: Required level of strong consistency = # of variables

Graphs and CSP's

A graph can be associated with a CSP \mathcal{P} .

Nodes: variables of \mathcal{P}

Arcs: connect two variables if they appear jointly in some constraint

28

Examples

SEND + MORE = MONEY puzzle
 The graph has 8 nodes, S, E, N, D, M, O, R, Y, and is complete

$$\langle x + y = z, x + u = v; \mathcal{DE} \rangle$$

 $\langle x < z, x < y, y < u, y < v ; \mathcal{DE} \rangle$

Width of a Graph

G: finite graph

- ∹: linear ordering on the nodes of G
- \bullet \prec -width of a node of G: number of arcs in G that connect it to \prec -smaller nodes
- The width of G: minimum of ≺-widths for all linear orderings ≺

Examples:

SEND + MORE = MONEY puzzle
 Complete graph with 8 nodes, so its width is 7

•

It is a tree, so its width = 1

Examples, ctd

The width of this graph is 2.

Two examples of the ≺-widths of the nodes:

Consistency via Strong k-Consistency

Theorem: Given a CSP such that

- all domains are non-empty
- it is strongly k-consistent
- the graph associated with it has width k − 1

Then this CSP is consistent.

Proof: Assume *n* variables

- Reorder the variables so that the resulting \prec -width is k-1
- Prove by induction that
 - there exists consistent instantiation with domain $\{x_1\}$
 - for every $j \in [1..n-1]$ each consistent instantiation with domain $\{x_1, ..., x_j\}$ can be extended to a consistent instantiation with domain $\{x_1, ..., x_{j+1}\}$

Useful Corollaries

Corollary 1

Given: \mathcal{P} and a linear ordering \prec such that

- all domains are non-empty
- P is node consistent
- P is directionally arc consistent w.r.t. ≺
- the ≺-width of the graph associated with P is 1

Then \mathcal{P} is consistent.

Corollary 2

Given: \mathcal{P} and a linear ordering \prec such that

- all domains are non-empty
- ullet ${\mathcal P}$ is directionally arc consistent w.r.t. \prec
- ullet ${\mathcal P}$ is directionally path consistent w.r.t. \prec
- the ≺-width of the graph associated with P is 2

Then \mathcal{P} is consistent.

Relational Consistency

"Ultimate" notion of local consistency

- Given: P and a subsequence C of its constraints
 P | C:
 - remove from \mathcal{P} all constraints not in \mathcal{C}
 - delete all domain expressions involving variables not present in any constraint $\mathcal C$
- P is relationally (i, m)-consistent if for every sequence C of m constraints and X ⊆ Var(C) of size i:
 every consistent instantiation with the domain X can be extended to a solution to P | C

Intuition:

For every sequence of *m* constraints and for every set *X* of *i* variables, each present in one of these *m* constraints:

Each consistent instantiation with the domain *X* can be extended to a solution to all these *m* constraints.

Relational Consistency, ctd

Some properties:

- A node consistent, binary CSP is arc consistent iff it is relationally (1, 1)-consistent
- A node consistent CSP is hyper-arc consistent iff it is relationally (1, 1)-consistent
- Every node consistent, normalized, relationally (2, 3)-consistent CSP is path consistent
- Every relationally (k 1, k)-consistent CSP with only binary constraints is k-consistent
- A CSP with m constraints is consistent iff it is relationally (0, m)-consistent

Some Notation

- Given: constraint C on variables X, subsequence Y of X
 ∏_Y(C) := {d[Y] | d ∈ C}
- Given: a sequence of constraints $C_1, ..., C_m$ on variables $X_1, ..., X_m$ $C_1 \bowtie ... \bowtie C_m := \{d \mid d[X_i] \mid \in C_i \text{ for } i \in [1..m]\}$ $C_1 \bowtie ... \bowtie C_m$ is a constraint on the "union" of $X_1, ..., X_m$

Characterization of Relational Consistency

RELATIONAL (i, m)-CONSISTENCY

$$\frac{C_X}{C_X \cap \prod_X (C_1 r \dots r C_m)}$$

If a regular CSP is closed under the applications of RELATIONAL (i, m)-CONSISTENCY rule for each subsequence of constraints $C_1, ..., C_m$ and each subsequence X of $Var(C_1, ..., C_m)$ of length i, then it is relationally (i, m)-consistent.

Objectives

- Introduce several local consistency notions:
 - node consistency
 - arc consistency, hyper-arc consistency, directional arc consistency
 - path consistency, directional path consistency
 - *k*-consistency, strong *k*-consistency
 - relational consistency
- Use the proof theoretic framework to characterize these notions