
1Foundations of Constraint Programming Search

Lecture 7

Search



2Foundations of Constraint Programming Search

Outline

Introduce search trees

Discuss various types of labeling trees, in particular trees for
- forward checking
- partial look ahead
- maintaining arc consistency (MAC)

Discuss various search algorithms for labeling trees

Discuss search algorithms for constrained optimization problems

Introduce various heuristics for search algorithms



3Foundations of Constraint Programming Search

Useful Slogan

Search Algorithm = Search Tree + Traversal Algorithm



4Foundations of Constraint Programming Search

Search Trees

Consider a CSP  with a sequence of variables X

Search tree for : a finite tree such that

its nodes are CSP's

its root is 
the nodes at an even level have exactly one direct descendant

if 1, ..., m are direct descendants of 0, then the union of 1, ..., m 

is equivalent w.r.t. X to 0



5Foundations of Constraint Programming Search

Labeling Trees

Specific search trees for finite CSP's

Splitting consists of labeling of the domain of a variable

Constraint propagation consists of a domain reduction method



6Foundations of Constraint Programming Search

Complete Labeling Trees

Constraint propagation absent

Given:

- a CSP  with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

Complete labeling tree associated with  and :

the direct descendants of the root are of the form (x1, d)

the direct descendants of a node (xj, d), where j ∈ [1..n – 1], are of the form (xj+1, )
its branches determine all the instantiations with the domain {x1, ..., xn}



7Foundations of Constraint Programming Search

Examples

Consider

〈x < y, y < z ; x  {1, 2, 3}, ∈ y  {2, 3}, ∈ z  {1, 2, 3}∈ 〉

1. with the ordering x  y  z

2. with the ordering x  z  y 



8Foundations of Constraint Programming Search

Sizes of Complete Labeling Trees

Given:

- a CSP with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

- D1, ..., Dn the corresponding variable domains

The number of nodes in the complete labeling tree associated with  is

|A|: the cardinality of set A

The complete labeling tree has the least number of nodes if the variables 
are ordered by their domain sizes in increasing order

1∑i=1

n
∏ j=1

i
∣D j∣



9Foundations of Constraint Programming Search

Examples

Tree in 1. (cf. Slide 7):

The cardinalities of the domains: 3, 2, 3

The tree has 1 + 3 + 3⋅2 + 3 2 3, i.e., 28 nodes⋅ ⋅

Tree in 2. (cf. Slide 7):

The cardinalities of the domains: 3, 3, 2

The tree has 1 + 3 + 3 3 + 3 3 2, i.e., 31 nodes⋅ ⋅ ⋅

Both trees have the same number of leaves: 18



10Foundations of Constraint Programming Search

Reduced Labeling Trees

An instantiation I is along the ordering x1, ..., xn if its domain is {x1, ..., xj} for some 
j  [1..∈ n].

Given:

- a CSP  with non-empty domains

- x1, ..., xn the sequence of its variables linearly ordered by 

Reduced labeling tree associated with  and :

the direct descendants of the root are of the form (x1, d)

the direct descendants of a node (xj, d), where j ∈ [1..n – 1], are of the form (xj+1, )
its branches determine all consistent instantiations along the ordering x1, ..., xn



11Foundations of Constraint Programming Search

Examples
Consider

〈x < y, y < z ; x  {1, 2, 3}, ∈ y  {2, 3}, ∈ z  {1, 2, 3}∈ 〉

1. with the ordering x  y  z

2. with the ordering x  z  y 

Reduced labeling trees can have different number of nodes and different 
number of leaves.



12Foundations of Constraint Programming Search

Labeling Trees with Constraint Propagation

Given:   ≔ 〈 ; x1  ∈ D1, ..., xn  ∈ Dn〉

Assume fixed form of constraint propagation prop(i) in the form of a domain 
reduction, where i  [0..∈ n – 1]

i determines the sequence xi+1, ..., xn of the variables to whose domains prop(i) 
is applied

Given current variable domains E1, ..., En, constraint propagation prop(i) 
transforms only Ei+1, ..., En

prop(i) depends on the original constraints  of  and on the domains E1, ..., Ei



13Foundations of Constraint Programming Search

prop Labeling Trees

prop labeling tree associated with :

its nodes are sequences of the domain expressions x1  ∈ E1, ..., xn  E∈ n

its root is x1  ∈ D1, x2  ∈ D2, ..., xn  D∈ n

each node at an even level 2i with i  [0..∈ n] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If i = n, this node is a leaf. Otherwise, it has exactly one direct descendant,
obtained using prop(i):

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ E'i+1, ..., xn ∈ E'n
where E'j  Ej for j  [∈ i + 1..n] 



14Foundations of Constraint Programming Search

prop Labeling Trees, ctd

each node at an odd level 2i + 1 with i  [0..∈ n – 1] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If Ej =  for some j  [∈ i + 1..n], this node is a leaf. Otherwise, it has direct 
descendants of the form

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  {∈ d}, xi+2  ∈ Ei+2, ..., xn ∈ En

for all d  ∈ Ei+1 such that the instantiation {(x1, d1), ..., (xi, di), (xi+1, d)} is consistent



15Foundations of Constraint Programming Search

Intuition

Given: node x1  ∈ E1, ..., xn  E∈ n at level 2i – 1 or 2i

if i  [2..∈ n – 1], we call x1, ..., xi-1 its past variables

if i  [1..∈ n], we call xi its current variable

if i  [0..∈ n – 1], we call xi+1, ..., xn its future variables

prop(i) affects only the domains of the future variables.



16Foundations of Constraint Programming Search

Example of a prop Labeling Tree

Consider a CSP with three variables, x1, x2, x3

A, B, C, and D are failed nodes. E and F are success nodes.



17Foundations of Constraint Programming Search

Example: SEND + MORE = MONEY

Complete Labeling Tree: Reduced Labeling Tree:



18Foundations of Constraint Programming Search

SEND + MORE = MONEY, ctd

Use as prop the domain reduction rules for linear constraints over integer 
intervals from Chapter 5.

prop Labeling Tree:



19Foundations of Constraint Programming Search

Sizes of Generated Trees

For SEND + MORE = MONEY: 

Complete labeling tree
Total number of leaves: 92⋅106 = 81000000

Reduced labeling tree
Total number of leaves: 10 9 8 7 6 5 4 – 2 (9 8 7 6 5 4)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  = 483840
Gain: 99.4% with respect to the complete labeling tree

prop labeling tree
Total number of leaves: 4



20Foundations of Constraint Programming Search

Instances of prop Labeling Trees

forward checking

partial look ahead

maintainting arc consistency (MAC)
(aka full look ahead)



21Foundations of Constraint Programming Search

Forward Checking Search Tree

Recall from the definition of prop labeling trees:

Each node at an even level 2i with i  [0..∈ n] is of the form 

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ Ei+1, ..., xn  E∈ n

If i = n, this node is a leaf. Otherwise, it has exactly one direct descendant,
obtained using prop(i):

x1  {∈ d1}, ..., xi  {∈ di}, xi+1  ∈ E'i+1, ..., xn ∈ E'n
where E'j   Ej for j  [∈ i + 1..n] 

Define

E'j  {≔   ∈ Ej | {(x1, d1), ..., (xi, di), (xj, )} is consistent}



22Foundations of Constraint Programming Search

Example: 5 Queens Problem

Take the standardized CSP corresponding to 5 Queens Problem.

Interpretation: the variables x1, x2, x3, x4, x5 correspond to the columns a, b, c, d, e

First queen placed at a1: Effect of forward checking:



23Foundations of Constraint Programming Search

Partial Look Ahead Search Tree

Impose forward checking

Impose directional arc consistency, e.g. using the DARC algorithm

Example: 5 Queens Problem

Effect of partial look ahead in the example:



24Foundations of Constraint Programming Search

MAC Search Tree

Impose forward checking

Impose arc consistency, e.g. using the ARC algorithm

Example: 5 Queens Problem

Effect of MAC in the example:



25Foundations of Constraint Programming Search

Search Algorithms for Labeling Trees

Backtrack-free search

Backtrack-free search with constraint propagation

Backtrack search

Backtrack search with constraint propagation
- forward checking
- partial look ahaed
- MAC

Search algorithms for constrained optimization problems:

Branch and bound search

Branch and bound with constraint propagation search



26Foundations of Constraint Programming Search

Declarations

cons(inst, j, d) ≡ “the instantiation 

 {(x1, inst[1]), ..., (xj-1, inst[j - 1]), (xj, d)} is consistent”

type domains = array [1..n] of domain;

 instantiation = array [1..n] of elements;

var inst: instantiation;

 failure: boolean



29Foundations of Constraint Programming Search

Backtracking
procedure backtrack(j: integer; D: domains; var success: boolean);

begin

while D[j ] ≠  and not success do

choose d from D[j ];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

success  (≔ j = n);

if not success then backtrack(j + 1, D, success)

end-if

end-while

end

begin

success  ≔ false;

backtrack(1, D, success)

end



30Foundations of Constraint Programming Search

Backtracking with Constraint Propagation
procedure backtrack_prop(j: integer; D: domains; var success: boolean);

begin

while D[j ] ≠  and not success do

choose d from D[j ];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

success  (≔ j = n);

if not success then

prop(j, D, failure);

if not failure then backtrack_prop(j + 1, D, success)

end-if

end-if

end-while

end

begin

success  ≔ false;

prop(0, D, failure);

if not failure then backtrack_prop(1, D, success)

end



31Foundations of Constraint Programming Search

Forward Checking
procedure revise(j, k: integer; var D: domains);

begin

D[k]  ≔ {d  ∈ D[k] | { (x1, inst[1]), ..., (xj, inst[j ]), (xk, d)} is a consistent instantiation}

end

procedure prop(j: integer; var D: domains; var failure: boolean);

var k: integer;

begin

failure  ≔ false;

k  ≔ j + 1;

while k < n + 1 and not failure do

revise(j ,k, D);

failure  (≔ D[k] = );

k  ≔ k + 1

end-while

end



32Foundations of Constraint Programming Search

Partial Look Ahead

procedure prop(j: integer; var D: domains; var failure: boolean);

var k: integer;

begin

failure  ≔ false;

k  ≔ j + 1;

while k < n + 1 and not failure do

revise(j ,k, D);

failure  (≔ D[k] = );

k  ≔ k + 1

end-while

if not failure then darc(j + 1, D, failure)

end



33Foundations of Constraint Programming Search

MAC (Full Look Ahead)

procedure prop(j: integer; var D: domains; var failure: boolean);

...

if not failure then arc(j + 1, D, failure)

end



35Foundations of Constraint Programming Search

Finite Constrained Optimization Problems

  ≔ 〈 ; x1  ∈ D1, ..., xn  ∈ Dn〉

obj : Sol → ℝ from the set Sol of all solutions to  to ℝ

Heuristic function h : (D1)  ...    (Dn) →  ℝ ∪ {∞}

Monotonicity: If Ē1   Ē2, then h(Ē1) ≤ h(Ē2)

Bound: obj(d1, ..., dn) ≤ h({d1}, ..., {dn})

procedure obj(inst: instantiation): real;

procedure h(inst: instantiation; j: integer; D: domains): real;

h(inst, j, D) returns the value of h on ({inst[1]}, ..., {inst[j ]}, D[j + 1], ..., D[n])



37Foundations of Constraint Programming Search

Branch and Bound with Constraint Propagation
procedure branch_and_bound_prop(j: integer; D: domains; var solution: instantiation; var bound: real);

begin

while D[j ] ≠  do

choose d from D[j];

D[j ]  ≔ D[j ] – {d};

if cons(inst, j, d) then

inst[j ]  ≔ d;

if j = n then

if obj(inst) > bound then 

bound  ≔ obj(inst); solution  inst≔
end-if

else 

prop(j, D, failure);

if not failure and h(inst, j, D) > bound then

branch_and_bound_prop(j + 1, D, solution, bound)

end-if

end-if

end-while

end



38Foundations of Constraint Programming Search

Branch and Bound with Constraint Propagation, ctd

begin

solution  ≔ nil; 

bound  -∞;≔
prop(0, D, failure);

if not failure then 

branch_and_bound_prop(1, D, solution, bound)

end



39Foundations of Constraint Programming Search

Heuristics for Search Algorithms

Variable Selection

Select a variable with the smallest domain

Select a most constrained variable

(For numeric domains)
Select a variable with the smallest difference between its domain bounds

Value Selection

Select a value for the heuristic function that yields the highest outcome

Select the smallest value

Select the largest value

Select the middle value



40Foundations of Constraint Programming Search

Objectives

Introduce search trees

Discuss various types of labeling trees, in particular trees for
- forward checking
- partial look ahead
- maintaining arc consistency (MAC)

Discuss various search algorithms for labeling trees

Discuss search algorithms for constrained optimization problems

Introduce various heuristics for search algorithms




