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Outline

Explain constraint propagation algorithms for various local 
consistency notions

Introduce generic iteration algorithms on partial orderings

Use them to explain constraint propagation algorithms

Discuss implementations of incomplete constraint solvers
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Motivation: Crossword Puzzle

Fill the crossword grid with words from

HOSES, LASER, SAILS, SHEET, STEER

HEEL, HIKE, KEEL, KNOT, LINE

AFT, ALE, EEL, LEE, TIE

Variables: x1, ..., x8

Domains: x7 ∈ {AFT, ALE, EEL, LEE, TIE}, etc.

Constraints: one per crossing

C1,2 := {(HOSES, SAILS), (HOSES, SHEET),

 (HOSES, STEER), (LASER, SAILS),

 (LASER, SHEET), (LASER, STEER)}

etc.

1 2 3

4 5

6 7

8
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Unique Solution

1 2 3

4 5

6 7

8

H O S E S
A T

H I K E
A L E E

L A S E R

E L

We can solve it by repeatedly applying ARC 
CONSISTENCY rules 1 and 2

But many derivations exist

General considerations:

How to schedule rule applications to guarantee 
termination?

How to avoid (at low cost) redundant rule 
applications?

Is the outcome of the derivations unique?

If so, how can it be characterized?
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Constraint Propagation: Intuition

Take a constraint satisfaction problem.

Repeatedly reduce its

domains and/or

constraints

while maintaining equivalence

Outcome: a locally consistent CSP

Constraint Propagation Algorithms

Scheduling of atomic reduction steps

Stopping criterion: local consistency notion
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Approach

Constraint propagation algorithms will be explained as 
special cases of generic iteration algorithms

We shall discuss these generic iteration algorithms first

Relevant properties of functions:
- monotonicity
- inflationarity
- idempotence
- commutativity

We shall study such functions on partial orderings

Generic iteration algorithms schedule such functions
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Partial Orderings

A binary relation R on a set D is

reflexive if (a, a) ∈ R for all a ∈ D

antisymmetric if for all a, b ∈ D
(a, b) ∈ R and (b, a) ∈ R implies a = b

transitive if for all a, b, c ∈ D
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Partial ordering: pair (D, ) with D a set and  a reflexive, antisymmetric, and 
transitive relation on D

Given (D, ), an element d ∈ D is the least element of D if d  e for all e ∈ D
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Fixpoints

Given: (D, ) and function f on D

a is a fixpoint of f if f(a) = a

a is the least fixpoint of f if a is the least 
element of the set {x ∈ D | f(x) = x}
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Iterations

Given: (D, ) with the least element ⊥ and a set of functions F ≔ {f1, ..., fk} on D

Iteration of F: an infinite sequence of values d0, d1, d2, ... defined by
               d0  ≔⊥     
                dj  ≔ fij(dj-1)

where j > 0 and each ij ∈ [1..k]

Increasing sequence d0  d1  d2 ... of elements from D eventually stabilizes 
at d if for some j ≥ 0
            di = d for i ≥ j
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Stabilisation

Consider partial ordering (D, ) and functions f, g on D

f is inflationary if x  f(x)

f is monotonic if x  y implies f(x)  f(y)

f is idempotent if f(f(x)) = f(x)

f and g commute if f(g(x)) = g(f(x))

f semi-commutes with g (w.r.t.  ) if f(g(x))  g(f(x))

Lemma

Given:

- (D, ) with the least element ⊥

- a finite set of monotonic functions F on D

Suppose an iteration of F eventually stabilizes at a common fixpoint d of 
functions from F. Then d is the least common fixpoint of functions from F.
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Commutativity

Given:

- (D, ) with the least element ⊥

- finite set F ≔ {f1, ..., fk} of functions on D such that

each f ∈ F is monotonic and idempotent

all f, g ∈ F commute

Then for each permutation : [1.. k] → [1..k]

 f (1) f (2) f⋅⋅⋅ ( k)(⊥)

is the least common fixpoint of the functions from F.
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Direct Iteration Algorithm

procedure DIRECT ITERATION

d  ≔ ;⊥
G  ≔ F;

while G ≠ ∅ do

choose g ∈ G;

d  ≔ g(d)

G  ≔ G – {g} 

end-while

end
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Semi-Commutativity

Given: 

- partial ordering (D, ) with the least element ⊥

- finite sequence F ≔ f1, ..., fk of 

monotonic

inflationary and

idempotent

functions on D. 

Suppose fi semi-commutes with fj for i > j.

Then 

 f1f2 ... fk(⊥) 

is the least common fixpoint of the functions from F.
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Simple Iteration Algorithm

procedure SIMPLE ITERATION

d  ;≔ ⊥
for i  ≔ k to 1 by – 1 do

d  ≔ fi(d)

end-for

end

Note: Upon termination d = f1f2 ... fk(⊥)

Theorem

Given: partial ordering (D, ) with the least element  and a ⊥ finite sequence 
F  ≔ f1, ..., fk of monotonic, inflationary, and idempotent functions on D such 
that fi semi-commutes with fj for j < i. Then the algorithm terminates and 
computes in d the least common fixpoint of functions from F.
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Generic Iteration Algorithm

In the absence of (semi-)commutativity information

Given: - (D, ) with the least element ⊥

 - finite set F  {≔ f1, ..., fk} of functions on D

procedure GENERIC ITERATION

d  ;≔ ⊥
G  ≔ F;

while G ≠ ∅ do

choose g ∈ G;

if d ≠ g(d) then G  ≔ G  ∪ update(G, g, d); d  ≔ g(d)

else G  ≔ G – {g} 

end-while

end

where {f ∈ F – G | f(d) = d ∧ f(g(d)) ≠ g(d)} ⊆ update(G, g, d)
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Properties of GI Algorithm

Theorem

Consider finite partial ordering (D, ) with  and functions⊥  F  {≔ f1, ..., fk} on D.

Suppose all functions in F are inflationary and monotonic.

Then every execution of the GI algorithm terminates and computes in d the 
least common fixpoint of the functions from F.



19Foundations of Constraint Programming Constraint Propagation

Instances for Compound Domains

Suppose:

(D, ) a Cartesian product of partial orderings

each function f ∈ F0 defined on some Cartesian subproduct, 
determined by scheme (subsequence of [1..n])

For f ∈ F0

 f + : D → D
f + is the canonic extension of f

f and g commute if
 f +(g +(d)) = g +(f +(d))
for all d ∈ D

f semi-commutes with g (w.r.t. ) if
 f +(g +(d))  g +(f +(d))
for all d ∈ D
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Instances for Compound Domains, ctd
procedure DIRECT ITERATION

d  (≔ ⊥1, ..., ⊥n);

G  ≔ F0;

while G ≠ ∅ do

choose g ∈ G; G  ≔ G – {g};

d[s]  ≔ g(d[s])  where s is the scheme of g

end-while

end

procedure SIMPLE ITERATION

d  (≔ ⊥1, ..., ⊥n);

for i  ≔ k to 1 by – 1 do where si is the scheme of fi
d[si]  ≔ fi(d[si])

end
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Instances for Compound Domains, ctd
Suppose:

(D, ) a Cartesian product of partial orderings

each function f ∈ F0 defined on some Cartesian subproduct, determined by scheme 
(subsequence of [1..n])

procedure COMPUND DOMAIN

d, d'  (≔ ⊥1, ..., ⊥n);

G  ≔ F0;

while G ≠ ∅ do

choose g ∈ G; suppose g has scheme s;

d'[s]  ≔ g(d[s]);

if d'[s] ≠ d[s] then G ≔  {∪ f ∈ F | f depends on an i in s such that d[i ] ≠ d'[i ]};

  d[s]  ≔ d'[s]

else G  ≔ G – {g} 

end-while

end
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From Abstract Framework to Constraint Propagation

Consider a CSP 〈C1, ..., Ck ; x1 ∈ D1, ..., xn ∈ Dn〉

Partial orderings with
- its elements:

 for arc consistency: (X1, ..., Xn) such that Xi   Di

 for path consistency: (X1, ..., Xk) such that Xi   Ci

- :⊥
 for arc consistency: (D1, ..., Dn)
 for path consistency: (C1, ..., Ck)

- : componentwise reversed subset ordering ⊇

Inflationary and monotonic functions:
functions that reduce domains or constraints

Common fixpoints:
correspond to CSP's that satisfy the various notions of local consistency
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Node Consistency Algorithm

CSP is node consistent if for every variable x every unary constraint on x 
coincides with the domain of x

S0  {≔ C | C is a unary constraint from };
S  ≔ S0;
while S ≠ ∅ do

choose C ∈ S; suppose C is on xi;
Di  ≔ C ∩ Di;

 S  ≔ S – {C}
end-while

An instance of the DIRECT ITERATION algorithm for compound domains

It can be systematically derived from it by choosing the appropriate partial 
ordering and functions
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Arc Consistency: Recap

A constraint C on the variables x, y with the domains 
X and Y (so C   X   Y) is arc consistent if
- ∀a ∈ X∃b ∈ Y (a, b) ∈ C
- ∀b ∈ Y∃a ∈ X (a, b) ∈ C

A CSP is arc consistent if all its binary constraints are
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Arc Consistency: Recap

ARC CONSISTENCY 1

where D'x  {≔ a ∈ Dx | ∃b ∈ Dy (a, b) ∈ C}

ARC CONSISTENCY 2

where D'y  {≔ b ∈ Dy | ∃a ∈ Dx (a, b) ∈ C}

A CSP is arc consistent iff it is closed under the 
applications of the ARC CONSISTENCY rules 1 and 2.

C ; x∈Dx , y ∈Dy

C ; x∈Dx
' , y ∈Dy

C ; x∈Dx , y ∈Dy

C ; x∈Dx , y ∈Dy
'
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Projection Functions

Given: C   X   Y

Let

 X' = {a ∈ X | ∃b ∈ Y (a, b) ∈ C}

 Y' = {b ∈ Y | ∃a ∈ X (a, b) ∈ C}

Define

  1(X, Y)  ≔ (X', Y)

 2(X, Y)  ≔ (X, Y')

ARC CONSISTENCY rule 1 corresponds to function 1 on (Dx)  (Dy)

ARC CONSISTENCY rule 2 corresponds to function 2 on (Dx)  (Dy)
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Arc Consistency as Fixpoint

i
+: canonic extension of i to all domains in the CSP

Lemma

〈 ; x1 ∈ D1, ..., xn ∈ Dn  is arc consistent iff (〉 D1, ..., Dn) is a common 
fixpoint of all functions 1

+ and 2
+

Each projection function i is
- inflationary w.r.t. the componentwise ordering ⊇
- monotonic w.r.t. the componentwise ordering ⊇

Conclusion:

We can instantiate the COMPOUND DOMAIN algorithm (cf. Slide 22) 
with the projection functions

Call it ARC algorithm 
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ARC Algorithm

procedure ARC

S0 ≔ {C | C is a binary constraint from }  ∪

 {CT | C is a binary constraint from };

S  ≔ S0;

while S ≠ ∅ do
choose C ∈ S; suppose C is on xi, xj;
Di  {≔ a ∈ Di | ∃b ∈ Dj (a, b) ∈ C};

 if Di changed then
 S  ≔ S  {∪ C' ∈ S0 | C' is on y, z where y is xi or z is xi

 else S  ≔ S – {C}

end-while

end
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Properties of ARC Algorithm

Theorem

Consider   ≔ 〈 ; x1 ∈ D1, ..., xn ∈ Dn  where each 〉 Di is finite.

The ARC algorithm always terminates. Let ' be the CSP determined 

by  and the sequence of the computed domains. Then

' is arc consistent

' is equivalent to 
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Hyper-Arc Consistency: Recap

〈C ; x1∈D1 , ... , xk∈Dk 〉

〈C ; ... , x i∈D i
' , ... 〉

A constraint C on the variables x1, ..., xk with the domains D1, ..., Dk is hyper-arc 
consistent if
 ∀i ∈ [1..n]∀a ∈ Di ∃d ∈ C a = d[xi]

CSP is hyper-arc consistent if all its constraints are

HYPER-ARC CONSISTENCY

C a constraint on the variables x1, ..., xk, i ∈ [1..k], D'i  {≔ a ∈ Di | ∃d ∈ C a = d[xi]}

A CSP is hyper-arc consistent iff it is closed under the applications of the HYPER-
ARC CONSISTENCY rule.
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Hyper-Arc Consistency as Fixpoint

C: a constraint on x1, ..., xk with respective domains D1, ..., Dk. For each i ∈ [1..k] 

HYPER-ARC CONSISTENCY rule corresponds to function i on (D1) ⋅⋅⋅ (Dk):

i (X1, ..., Xk)  (≔ X1, ..., Xi-1, X'i, Xi+1, ..., Xk)

where X'i = {d[xi] | d ∈ X1  ⋅⋅⋅ Xk and d ∈ C}

Each i is associated with a constraint C

Theorem

A CSP 〈 ; x1 ∈ D1, ..., xn ∈ Dn  is hyper-arc consistent iff (〉 D1, ..., Dn) is a common 
fixpoint of all functions i

+

Each function i is
- inflationary w.r.t. the componentwise ordering ⊇
- monotonic w.r.t. the componentwise ordering ⊇
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Hyper-Arc Consistency Algorithm

Instantiate the COMPOUND DOMAIN algorithm (cf. Slide 22) with

F0 ≔ {f | f is a i function associated with a constraint of }

and each ⊥i  ≔ Di

Call it HYPER-ARC algorithm

Theorem

Consider   ≔ 〈 ; x1 ∈ D1, ..., xn ∈ Dn  where each 〉 Di is finite.

The HYPER-ARC algorithm always terminates. Let ' be the CSP determined by 

 and the sequence of the domains computed in d. Then

' is hyper-arc consistent

' is equivalent to 
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Implementation of Incomplete Constraint Solvers

Lemma

Consider a domain reduction rule R. Suppose the domains in conclusion of R are 
built from the domains in premise of R using these operations on relations:

union and intersection

transposition operation “.T”

composition operation “.⋅..”
join operation «

projection functions i and ∏X

removal of an element

Then R viewed as function on the variable domains is inflationary and monotonic 
w.r.t. the componentwise ordering ⊇.

Conclusion: We can instantiate the GENERIC ITERATION algorithm by such 
domain reduction rules. This yields implementations of incomplete constraint 
solvers of Chapter 5.
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Other Local Consistency Notions

This approach applies to other local consistency notions. 
The GENERIC ITERATION algorithm can be used to derive 
constraint propagation algorithms for

directional path consistency

k-consistency

strong k-consistency

relational consistency
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Objectives

Explain constraint propagation algorithms for various local 
consistency notions

Introduce generic interation algorithms on partial orderings

Use them to explain constraint propagation algorithms

Discuss implementations of incomplete constraint solvers
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