
1Foundations of Constraint Programming Constraint Propagation

Lecture 6

Constraint Propagation

2Foundations of Constraint Programming Constraint Propagation

Outline

Explain constraint propagation algorithms for various local
consistency notions

Introduce generic iteration algorithms on partial orderings

Use them to explain constraint propagation algorithms

Discuss implementations of incomplete constraint solvers

3Foundations of Constraint Programming Constraint Propagation

Motivation: Crossword Puzzle

Fill the crossword grid with words from

HOSES, LASER, SAILS, SHEET, STEER

HEEL, HIKE, KEEL, KNOT, LINE

AFT, ALE, EEL, LEE, TIE

Variables: x1, ..., x8

Domains: x7 ∈ {AFT, ALE, EEL, LEE, TIE}, etc.

Constraints: one per crossing

C1,2 := {(HOSES, SAILS), (HOSES, SHEET),

 (HOSES, STEER), (LASER, SAILS),

 (LASER, SHEET), (LASER, STEER)}

etc.

1 2 3

4 5

6 7

8

4Foundations of Constraint Programming Constraint Propagation

Unique Solution

1 2 3

4 5

6 7

8

H O S E S
A T

H I K E
A L E E

L A S E R

E L

We can solve it by repeatedly applying ARC
CONSISTENCY rules 1 and 2

But many derivations exist

General considerations:

How to schedule rule applications to guarantee
termination?

How to avoid (at low cost) redundant rule
applications?

Is the outcome of the derivations unique?

If so, how can it be characterized?

5Foundations of Constraint Programming Constraint Propagation

Constraint Propagation: Intuition

Take a constraint satisfaction problem.

Repeatedly reduce its

domains and/or

constraints

while maintaining equivalence

Outcome: a locally consistent CSP

Constraint Propagation Algorithms

Scheduling of atomic reduction steps

Stopping criterion: local consistency notion

7Foundations of Constraint Programming Constraint Propagation

Approach

Constraint propagation algorithms will be explained as
special cases of generic iteration algorithms

We shall discuss these generic iteration algorithms first

Relevant properties of functions:
- monotonicity
- inflationarity
- idempotence
- commutativity

We shall study such functions on partial orderings

Generic iteration algorithms schedule such functions

8Foundations of Constraint Programming Constraint Propagation

Partial Orderings

A binary relation R on a set D is

reflexive if (a, a) ∈ R for all a ∈ D

antisymmetric if for all a, b ∈ D
(a, b) ∈ R and (b, a) ∈ R implies a = b

transitive if for all a, b, c ∈ D
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Partial ordering: pair (D, ) with D a set and  a reflexive, antisymmetric, and
transitive relation on D

Given (D, ), an element d ∈ D is the least element of D if d  e for all e ∈ D

10Foundations of Constraint Programming Constraint Propagation

Fixpoints

Given: (D, ) and function f on D

a is a fixpoint of f if f(a) = a

a is the least fixpoint of f if a is the least
element of the set {x ∈ D | f(x) = x}

11Foundations of Constraint Programming Constraint Propagation

Iterations

Given: (D, ) with the least element ⊥ and a set of functions F ≔ {f1, ..., fk} on D

Iteration of F: an infinite sequence of values d0, d1, d2, ... defined by
 d0 ≔⊥
 dj ≔ fij(dj-1)

where j > 0 and each ij ∈ [1..k]

Increasing sequence d0  d1  d2 ... of elements from D eventually stabilizes
at d if for some j ≥ 0
 di = d for i ≥ j

12Foundations of Constraint Programming Constraint Propagation

Stabilisation

Consider partial ordering (D, ) and functions f, g on D

f is inflationary if x  f(x)

f is monotonic if x  y implies f(x)  f(y)

f is idempotent if f(f(x)) = f(x)

f and g commute if f(g(x)) = g(f(x))

f semi-commutes with g (w.r.t. ) if f(g(x))  g(f(x))

Lemma

Given:

- (D, ) with the least element ⊥

- a finite set of monotonic functions F on D

Suppose an iteration of F eventually stabilizes at a common fixpoint d of
functions from F. Then d is the least common fixpoint of functions from F.

13Foundations of Constraint Programming Constraint Propagation

Commutativity

Given:

- (D, ) with the least element ⊥

- finite set F ≔ {f1, ..., fk} of functions on D such that

each f ∈ F is monotonic and idempotent

all f, g ∈ F commute

Then for each permutation : [1.. k] → [1..k]

 f (1) f (2) f⋅⋅⋅ ( k)(⊥)

is the least common fixpoint of the functions from F.

14Foundations of Constraint Programming Constraint Propagation

Direct Iteration Algorithm

procedure DIRECT ITERATION

d ≔ ;⊥
G ≔ F;

while G ≠ ∅ do

choose g ∈ G;

d ≔ g(d)

G ≔ G – {g}

end-while

end

15Foundations of Constraint Programming Constraint Propagation

Semi-Commutativity

Given:

- partial ordering (D, ) with the least element ⊥

- finite sequence F ≔ f1, ..., fk of

monotonic

inflationary and

idempotent

functions on D.

Suppose fi semi-commutes with fj for i > j.

Then

 f1f2 ... fk(⊥)

is the least common fixpoint of the functions from F.

16Foundations of Constraint Programming Constraint Propagation

Simple Iteration Algorithm

procedure SIMPLE ITERATION

d ;≔ ⊥
for i ≔ k to 1 by – 1 do

d ≔ fi(d)

end-for

end

Note: Upon termination d = f1f2 ... fk(⊥)

Theorem

Given: partial ordering (D, ) with the least element and a ⊥ finite sequence
F ≔ f1, ..., fk of monotonic, inflationary, and idempotent functions on D such
that fi semi-commutes with fj for j < i. Then the algorithm terminates and
computes in d the least common fixpoint of functions from F.

17Foundations of Constraint Programming Constraint Propagation

Generic Iteration Algorithm

In the absence of (semi-)commutativity information

Given: - (D, ) with the least element ⊥

 - finite set F {≔ f1, ..., fk} of functions on D

procedure GENERIC ITERATION

d ;≔ ⊥
G ≔ F;

while G ≠ ∅ do

choose g ∈ G;

if d ≠ g(d) then G ≔ G ∪ update(G, g, d); d ≔ g(d)

else G ≔ G – {g}

end-while

end

where {f ∈ F – G | f(d) = d ∧ f(g(d)) ≠ g(d)} ⊆ update(G, g, d)

18Foundations of Constraint Programming Constraint Propagation

Properties of GI Algorithm

Theorem

Consider finite partial ordering (D, ) with and functions⊥ F {≔ f1, ..., fk} on D.

Suppose all functions in F are inflationary and monotonic.

Then every execution of the GI algorithm terminates and computes in d the
least common fixpoint of the functions from F.

19Foundations of Constraint Programming Constraint Propagation

Instances for Compound Domains

Suppose:

(D, ) a Cartesian product of partial orderings

each function f ∈ F0 defined on some Cartesian subproduct,
determined by scheme (subsequence of [1..n])

For f ∈ F0

 f + : D → D
f + is the canonic extension of f

f and g commute if
 f +(g +(d)) = g +(f +(d))
for all d ∈ D

f semi-commutes with g (w.r.t. ) if
 f +(g +(d))  g +(f +(d))
for all d ∈ D

20Foundations of Constraint Programming Constraint Propagation

Instances for Compound Domains, ctd
procedure DIRECT ITERATION

d (≔ ⊥1, ..., ⊥n);

G ≔ F0;

while G ≠ ∅ do

choose g ∈ G; G ≔ G – {g};

d[s] ≔ g(d[s]) where s is the scheme of g

end-while

end

procedure SIMPLE ITERATION

d (≔ ⊥1, ..., ⊥n);

for i ≔ k to 1 by – 1 do where si is the scheme of fi
d[si] ≔ fi(d[si])

end

21Foundations of Constraint Programming Constraint Propagation

Instances for Compound Domains, ctd
Suppose:

(D, ) a Cartesian product of partial orderings

each function f ∈ F0 defined on some Cartesian subproduct, determined by scheme
(subsequence of [1..n])

procedure COMPUND DOMAIN

d, d' (≔ ⊥1, ..., ⊥n);

G ≔ F0;

while G ≠ ∅ do

choose g ∈ G; suppose g has scheme s;

d'[s] ≔ g(d[s]);

if d'[s] ≠ d[s] then G ≔ {∪ f ∈ F | f depends on an i in s such that d[i] ≠ d'[i]};

 d[s] ≔ d'[s]

else G ≔ G – {g}

end-while

end

22Foundations of Constraint Programming Constraint Propagation

From Abstract Framework to Constraint Propagation

Consider a CSP 〈C1, ..., Ck ; x1 ∈ D1, ..., xn ∈ Dn〉

Partial orderings with
- its elements:

 for arc consistency: (X1, ..., Xn) such that Xi  Di

 for path consistency: (X1, ..., Xk) such that Xi  Ci

- :⊥
 for arc consistency: (D1, ..., Dn)
 for path consistency: (C1, ..., Ck)

- : componentwise reversed subset ordering ⊇

Inflationary and monotonic functions:
functions that reduce domains or constraints

Common fixpoints:
correspond to CSP's that satisfy the various notions of local consistency

23Foundations of Constraint Programming Constraint Propagation

Node Consistency Algorithm

CSP is node consistent if for every variable x every unary constraint on x
coincides with the domain of x

S0 {≔ C | C is a unary constraint from };
S ≔ S0;
while S ≠ ∅ do

choose C ∈ S; suppose C is on xi;
Di ≔ C ∩ Di;

 S ≔ S – {C}
end-while

An instance of the DIRECT ITERATION algorithm for compound domains

It can be systematically derived from it by choosing the appropriate partial
ordering and functions

24Foundations of Constraint Programming Constraint Propagation

Arc Consistency: Recap

A constraint C on the variables x, y with the domains
X and Y (so C  X  Y) is arc consistent if
- ∀a ∈ X∃b ∈ Y (a, b) ∈ C
- ∀b ∈ Y∃a ∈ X (a, b) ∈ C

A CSP is arc consistent if all its binary constraints are

25Foundations of Constraint Programming Constraint Propagation

Arc Consistency: Recap

ARC CONSISTENCY 1

where D'x {≔ a ∈ Dx | ∃b ∈ Dy (a, b) ∈ C}

ARC CONSISTENCY 2

where D'y {≔ b ∈ Dy | ∃a ∈ Dx (a, b) ∈ C}

A CSP is arc consistent iff it is closed under the
applications of the ARC CONSISTENCY rules 1 and 2.

C ; x∈Dx , y ∈Dy

C ; x∈Dx
' , y ∈Dy

C ; x∈Dx , y ∈Dy

C ; x∈Dx , y ∈Dy
'

26Foundations of Constraint Programming Constraint Propagation

Projection Functions

Given: C  X  Y

Let

 X' = {a ∈ X | ∃b ∈ Y (a, b) ∈ C}

 Y' = {b ∈ Y | ∃a ∈ X (a, b) ∈ C}

Define

 1(X, Y) ≔ (X', Y)

 2(X, Y) ≔ (X, Y')

ARC CONSISTENCY rule 1 corresponds to function 1 on (Dx)  (Dy)

ARC CONSISTENCY rule 2 corresponds to function 2 on (Dx)  (Dy)

27Foundations of Constraint Programming Constraint Propagation

Arc Consistency as Fixpoint

i
+: canonic extension of i to all domains in the CSP

Lemma

〈 ; x1 ∈ D1, ..., xn ∈ Dn is arc consistent iff (〉 D1, ..., Dn) is a common
fixpoint of all functions 1

+ and 2
+

Each projection function i is
- inflationary w.r.t. the componentwise ordering ⊇
- monotonic w.r.t. the componentwise ordering ⊇

Conclusion:

We can instantiate the COMPOUND DOMAIN algorithm (cf. Slide 22)
with the projection functions

Call it ARC algorithm

28Foundations of Constraint Programming Constraint Propagation

ARC Algorithm

procedure ARC

S0 ≔ {C | C is a binary constraint from } ∪

 {CT | C is a binary constraint from };

S ≔ S0;

while S ≠ ∅ do
choose C ∈ S; suppose C is on xi, xj;
Di {≔ a ∈ Di | ∃b ∈ Dj (a, b) ∈ C};

 if Di changed then
 S ≔ S {∪ C' ∈ S0 | C' is on y, z where y is xi or z is xi

 else S ≔ S – {C}

end-while

end

29Foundations of Constraint Programming Constraint Propagation

Properties of ARC Algorithm

Theorem

Consider  ≔ 〈 ; x1 ∈ D1, ..., xn ∈ Dn where each 〉 Di is finite.

The ARC algorithm always terminates. Let ' be the CSP determined

by  and the sequence of the computed domains. Then

' is arc consistent

' is equivalent to 

30Foundations of Constraint Programming Constraint Propagation

Hyper-Arc Consistency: Recap

〈C ; x1∈D1 , ... , xk∈Dk 〉

〈C ; ... , x i∈D i
' , ... 〉

A constraint C on the variables x1, ..., xk with the domains D1, ..., Dk is hyper-arc
consistent if
 ∀i ∈ [1..n]∀a ∈ Di ∃d ∈ C a = d[xi]

CSP is hyper-arc consistent if all its constraints are

HYPER-ARC CONSISTENCY

C a constraint on the variables x1, ..., xk, i ∈ [1..k], D'i {≔ a ∈ Di | ∃d ∈ C a = d[xi]}

A CSP is hyper-arc consistent iff it is closed under the applications of the HYPER-
ARC CONSISTENCY rule.

31Foundations of Constraint Programming Constraint Propagation

Hyper-Arc Consistency as Fixpoint

C: a constraint on x1, ..., xk with respective domains D1, ..., Dk. For each i ∈ [1..k]

HYPER-ARC CONSISTENCY rule corresponds to function i on (D1) ⋅⋅⋅ (Dk):

i (X1, ..., Xk) (≔ X1, ..., Xi-1, X'i, Xi+1, ..., Xk)

where X'i = {d[xi] | d ∈ X1 ⋅⋅⋅ Xk and d ∈ C}

Each i is associated with a constraint C

Theorem

A CSP 〈 ; x1 ∈ D1, ..., xn ∈ Dn is hyper-arc consistent iff (〉 D1, ..., Dn) is a common
fixpoint of all functions i

+

Each function i is
- inflationary w.r.t. the componentwise ordering ⊇
- monotonic w.r.t. the componentwise ordering ⊇

32Foundations of Constraint Programming Constraint Propagation

Hyper-Arc Consistency Algorithm

Instantiate the COMPOUND DOMAIN algorithm (cf. Slide 22) with

F0 ≔ {f | f is a i function associated with a constraint of }

and each ⊥i ≔ Di

Call it HYPER-ARC algorithm

Theorem

Consider  ≔ 〈 ; x1 ∈ D1, ..., xn ∈ Dn where each 〉 Di is finite.

The HYPER-ARC algorithm always terminates. Let ' be the CSP determined by

 and the sequence of the domains computed in d. Then

' is hyper-arc consistent

' is equivalent to 

41Foundations of Constraint Programming Constraint Propagation

Implementation of Incomplete Constraint Solvers

Lemma

Consider a domain reduction rule R. Suppose the domains in conclusion of R are
built from the domains in premise of R using these operations on relations:

union and intersection

transposition operation “.T”

composition operation “.⋅..”
join operation «

projection functions i and ∏X

removal of an element

Then R viewed as function on the variable domains is inflationary and monotonic
w.r.t. the componentwise ordering ⊇.

Conclusion: We can instantiate the GENERIC ITERATION algorithm by such
domain reduction rules. This yields implementations of incomplete constraint
solvers of Chapter 5.

42Foundations of Constraint Programming Constraint Propagation

Other Local Consistency Notions

This approach applies to other local consistency notions.
The GENERIC ITERATION algorithm can be used to derive
constraint propagation algorithms for

directional path consistency

k-consistency

strong k-consistency

relational consistency

43Foundations of Constraint Programming Constraint Propagation

Objectives

Explain constraint propagation algorithms for various local
consistency notions

Introduce generic interation algorithms on partial orderings

Use them to explain constraint propagation algorithms

Discuss implementations of incomplete constraint solvers

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

