Lecture 7

Search
Outline

- Introduce search trees
- Discuss various types of labeling trees, in particular trees for
 - forward checking
 - partial look ahead
 - maintaining arc consistency (MAC)
- Discuss various search algorithms for labeling trees
- Discuss search algorithms for constrained optimization problems
- Introduce various heuristics for search algorithms
Useful Slogan

Search Algorithm = Search Tree + Traversal Algorithm
Consider a CSP \mathcal{P} with a sequence of variables X

Search tree for \mathcal{P}: a finite tree such that

- its nodes are CSP's
- its root is \mathcal{P}
- the nodes at an even level have exactly one direct descendant
- if $\mathcal{P}_1, \ldots, \mathcal{P}_m$ are direct descendants of \mathcal{P}_0, then the union of $\mathcal{P}_1, \ldots, \mathcal{P}_m$ is equivalent w.r.t. X to \mathcal{P}_0
Labeling Trees

Specific search trees for finite CSP's

- Splitting consists of labeling of the domain of a variable
- Constraint propagation consists of a domain reduction method
Complete Labeling Trees

Constraint propagation absent

Given:
- a CSP \mathcal{P} with non-empty domains
- $x_1, ..., x_n$ the sequence of its variables linearly ordered by $<$

Complete labeling tree associated with \mathcal{P} and $<$:

- the direct descendants of the root are of the form (x_1, d)
- the direct descendants of a node (x_j, d), where $j \in [1..n - 1]$, are of the form (x_{j+1}, e)
- its branches determine all the instantiations with the domain $\{x_1, ..., x_n\}$
Examples

Consider
\(\langle x < y, y < z ; x \in \{1, 2, 3\}, y \in \{2, 3\}, z \in \{1, 2, 3\} \rangle \)

1. with the ordering \(x < y < z \)

2. with the ordering \(x < z < y \)
Sizes of Complete Labeling Trees

Given:
- a CSP with non-empty domains
- x_1, \ldots, x_n the sequence of its variables linearly ordered by $<$
- D_1, \ldots, D_n the corresponding variable domains
 - The number of nodes in the complete labeling tree associated with $<$ is
 \[1 + \sum_{i=1}^{n} (\prod_{j=1}^{i} |D_j|) \]

 $|A|$: the cardinality of set A
 - The complete labeling tree has the least number of nodes if the variables are ordered by their domain sizes in increasing order
Examples

Tree in 1. (cf. Slide 7):
The cardinalities of the domains: 3, 2, 3
The tree has $1 + 3 + 3 \cdot 2 + 3 \cdot 2 \cdot 3$, i.e., 28 nodes

Tree in 2. (cf. Slide 7):
The cardinalities of the domains: 3, 3, 2
The tree has $1 + 3 + 3 \cdot 3 + 3 \cdot 3 \cdot 2$, i.e., 31 nodes

Both trees have the same number of leaves: 18
Reduced Labeling Trees

An instantiation I is along the ordering $x_1, ..., x_n$ if its domain is $\{x_1, ..., x_j\}$ for some $j \in [1..n]$.

Given:
- a CSP \mathcal{P} with non-empty domains
- $x_1, ..., x_n$ the sequence of its variables linearly ordered by \prec

Reduced labeling tree associated with \mathcal{P} and \prec:
- the direct descendants of the root are of the form (x_1, d)
- the direct descendants of a node (x_j, d), where $j \in [1..n-1]$, are of the form (x_{j+1}, e)
- its branches determine all consistent instantiations along the ordering $x_1, ..., x_n$
Examples

Consider
\[\langle x < y, y < z ; x \in \{1, 2, 3\}, y \in \{2, 3\}, z \in \{1, 2, 3\} \rangle \]

1. with the ordering \(x < y < z \)

```
(x, 1)  (x, 2)  (x, 3)
|      |      |
(y, 2) (y, 3) (y, 3)
    |      |
(z, 3)                           
```

2. with the ordering \(x < z < y \)

```
(x, 1)  (x, 2)  (x, 3)
|      |      |
(z, 1) (z, 2) (z, 3) (z, 1) (z, 2) (z, 3) (z, 1) (z, 2) (z, 3)
    |      |
(y, 2)                           
```

Reduced labeling trees can have different number of nodes and different number of leaves.
Labeling Trees with Constraint Propagation

Given: $\mathcal{P} := \langle C ; x_1 \in D_1, ..., x_n \in D_n \rangle$

- Assume fixed form of constraint propagation $prop(i)$ in the form of a domain reduction, where $i \in [0..n - 1]$
- i determines the sequence $x_{i+1}, ..., x_n$ of the variables to whose domains $prop(i)$ is applied
- Given current variable domains $E_1, ..., E_n$, constraint propagation $prop(i)$ transforms only $E_{i+1}, ..., E_n$
- $prop(i)$ depends on the original constraints C of \mathcal{P} and on the domains $E_1, ..., E_i$
prop Labeling Trees

prop labeling tree associated with \(\mathcal{P} \):

- its nodes are sequences of the domain expressions \(x_1 \in E_1, ..., x_n \in E_n \)
- its root is \(x_1 \in D_1, x_2 \in D_2, ..., x_n \in D_n \)
- each node at an even level \(2i \) with \(i \in [0..n] \) is of the form
 \[x_1 \in \{ d_1 \}, ..., x_i \in \{ d_i \}, x_{i+1} \in E_{i+1}, ..., x_n \in E_n \]
 If \(i = n \), this node is a leaf. Otherwise, it has exactly one direct descendant, obtained using \(prop(i) \):
 \[x_1 \in \{ d_1 \}, ..., x_i \in \{ d_i \}, x_{i+1} \in E'_{i+1}, ..., x_n \in E'_n \]
 where \(E'_j \subseteq E_j \) for \(j \in [i + 1..n] \)
each node at an odd level $2i + 1$ with $i \in [0..n - 1]$ is of the form
\[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n \]
If $E_j = \emptyset$ for some $j \in [i + 1..n]$, this node is a leaf. Otherwise, it has direct
descendants of the form
\[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in \{d\}, x_{i+2} \in E_{i+2}, \ldots, x_n \in E_n \]
for all $d \in E_{i+1}$ such that the instantiation $\{(x_1, d_1), \ldots, (x_i, d_i), (x_{i+1}, d)\}$ is consistent
Intuition

Given: node $x_1 \in E_1$, ..., $x_n \in E_n$ at level $2i - 1$ or $2i$

- if $i \in [2..n - 1]$, we call x_1, ..., x_{i-1} its past variables
- if $i \in [1..n]$, we call x_i its current variable
- if $i \in [0..n - 1]$, we call x_{i+1}, ..., x_n its future variables

$prop(i)$ affects only the domains of the future variables.
Consider a CSP with three variables, x_1, x_2, x_3.

A, B, C, and D are failed nodes. E and F are success nodes.
Example: SEND + MORE = MONEY

Complete Labeling Tree:

Reduced Labeling Tree:
SEN D + MORE = MONEY, ctd

Use as prop the domain reduction rules for linear constraints over integer intervals from Chapter 5.

prop Labeling Tree:
Sizes of Generated Trees

For SEND + MORE = MONEY:

- Complete labeling tree
 Total number of leaves: $9^2 \cdot 10^6 = 81000000$

- Reduced labeling tree
 Total number of leaves: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 - 2 \cdot (9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4) = 483840$
 Gain: 99.4% with respect to the complete labeling tree

- prop labeling tree
 Total number of leaves: 4
Instances of \textit{prop} Labeling Trees

- forward checking
- partial look ahead
- maintaining arc consistency (MAC) (aka full look ahead)
Forward Checking Search Tree

Recall from the definition of *prop* labeling trees:

- Each node at an **even** level $2i$ with $i \in [0..n]$ is of the form
 \[
 x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n
 \]
 If $i = n$, this node is a leaf. Otherwise, it has exactly one direct descendant, obtained using *prop*(i):
 \[
 x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E'_{i+1}, \ldots, x_n \in E'_n
 \]
 where $E'_j \subseteq E_j$ for $j \in [i + 1..n]$

Define

\[
E'_j := \{ e \in E_j \mid \{(x_1, d_1), \ldots, (x_i, d_i), (x_j, e)\} \text{ is consistent}\}
\]
Example: 5 Queens Problem

Take the standardized CSP corresponding to 5 Queens Problem.
Interpretation: the variables x_1, x_2, x_3, x_4, x_5 correspond to the columns a, b, c, d, e

First queen placed at a_1:

![Chessboard with queen at a1](image1)

Effect of forward checking:

![Chessboard with forward checking](image2)
Partial Look Ahead Search Tree

- Impose forward checking
- Impose directional arc consistency, e.g. using the DARC algorithm

Example: 5 Queens Problem
Effect of partial look ahead in the example:
MAC Search Tree

- Impose forward checking
- Impose arc consistency, e.g. using the **ARC** algorithm

Example: 5 Queens Problem
Effect of MAC in the example:
Search Algorithms for Labeling Trees

- Backtrack-free search
- Backtrack-free search with constraint propagation
- Backtrack search
- Backtrack search with constraint propagation
 - forward checking
 - partial look ahead
 - MAC

Search algorithms for constrained optimization problems:
- Branch and bound search
- Branch and bound with constraint propagation search
Declarations

\[
\text{cons}(\text{inst}, j, d) \equiv \text{“the instantiation} \{(x_1, \text{inst}[1]), \ldots, (x_{j-1}, \text{inst}[j-1]), (x_j, d)\} \text{ is consistent”}
\]

\textbf{type} domains = \textbf{array} [1..n] \textbf{of} \text{domain};
\text{instantiation} = \textbf{array} [1..n] \textbf{of} \text{elements};

\textbf{var} inst: \text{instantiation};
\text{failure: boolean}
Backtracking

procedure backtrack(j: integer; D: domains; var success: boolean);
begin
 while $D[j] \neq \emptyset$ and not success do
 choose d from $D[j]$;
 $D[j] := D[j] - \{d\}$;
 if cons(inst, j, d) then
 inst[j] := d;
 success := ($j = n$);
 if not success then backtrack($j + 1$, D, success)
 end-if
 end-while
end

begin
 success := false;
 backtrack(1, D, success)
end
Backtracking with Constraint Propagation

procedure backtrack_prop(j: integer; D: domains; var success: boolean);
begin
 while $D[j] \neq \emptyset$ and not success do
 choose d from $D[j]$;
 $D[j] := D[j] - \{d\}$;
 if cons(inst, j, d) then
 inst[j] := d;
 success := (j = n);
 if not success then
 prop(j, D, failure);
 if not failure then backtrack_prop(j + 1, D, success)
 end-if
 end-if
 end-while
end

begin
 success := false;
 prop(0, D, failure);
 if not failure then backtrack_prop(1, D, success)
end
Forward Checking

procedure revise(j, k: integer; var D: domains);
begin
 \[D[k] := \{ d \in D[k] \mid \{ (x_1, \text{inst}[1]), \ldots, (x_j, \text{inst}[j]), (x_k, d) \} \text{ is a consistent instantiation} \} \]
end

procedure prop(j: integer; var D: domains; var failure: boolean);
var k: integer;
begin
 failure := false;
 k := j + 1;
 while k < n + 1 and not failure do
 revise(j, k, D);
 failure := (D[k] = \emptyset);
 k := k + 1
 end-while
end
Partial Look Ahead

procedure prop(j: integer; var D: domains; var failure: boolean);
var k: integer;
begin
 failure := false;
 k := j + 1;
 while k < n + 1 and not failure do
 revise(j, k, D);
 failure := (D[k] = φ);
 k := k + 1
 end-while
 if not failure then darc(j + 1, D, failure)
end
procedure prop(j: integer; var D: domains; var failure: boolean);
...
 if not failure then arc(j + 1, D, failure)
end
Finite Constrained Optimization Problems

- $\mathcal{P} := \langle C ; x_1 \in D_1, \ldots, x_n \in D_n \rangle$
- $\text{obj} : \text{Sol} \rightarrow \mathbb{R}$ from the set Sol of all solutions to \mathcal{P} to \mathbb{R}
- Heuristic function $h : \mathcal{P}(D_1) \times \ldots \times \mathcal{P}(D_n) \rightarrow \mathbb{R} \cup \{\infty\}$

Monotonicity: If $\bar{E}_1 \subseteq \bar{E}_2$, then $h(\bar{E}_1) \leq h(\bar{E}_2)$

Bound: $\text{obj}(d_1, \ldots, d_n) \leq h(\{d_1\}, \ldots, \{d_n\})$

procedure $\text{obj}(\text{inst}: \text{instantiation}): \text{real}$;

procedure $h(\text{inst}: \text{instantiation}; j: \text{integer}; D: \text{domains}): \text{real}$;

$h(\text{inst}, j, D)$ returns the value of h on ($\{\text{inst}[1]\}, \ldots, \{\text{inst}[j]\}, D[j + 1], \ldots, D[n]$)
Branch and Bound with Constraint Propagation

procedure branch_and_bound_prop(j: integer; D: domains; var solution: instantiation; var bound: real);
begin
 while $D[j] \neq \emptyset$ do
 choose d from $D[j]$;
 $D[j] := D[j] \setminus \{d\}$;
 if cons(inst, j, d) then
 inst[j] := d;
 if $j = n$ then
 if $obj(inst) > bound$ then
 bound := $obj(inst)$; solution := inst
 end-if
 else
 prop(j, D, failure);
 if not failure and $h(inst, j, D) > bound$ then
 branch_and_bound_prop(j + 1, D, solution, bound)
 end-if
 end-if
 end-if
 end-while
end
begin
 solution := \texttt{nil};
 bound := -\infty;
 prop(0, D, failure);
 \textbf{if not} failure \textbf{then}
 \hspace{1em} branch_and_bound_prop(1, D, solution, bound)
end
Heuristics for Search Algorithms

Variable Selection
- Select a variable with the smallest domain
- Select a most constrained variable
- (For numeric domains)
 Select a variable with the smallest difference between its domain bounds

Value Selection
- Select a value for the heuristic function that yields the highest outcome
- Select the smallest value
- Select the largest value
- Select the middle value
Objectives

- Introduce search trees
- Discuss various types of labeling trees, in particular trees for
 - forward checking
 - partial look ahead
 - maintaining arc consistency (MAC)
- Discuss various search algorithms for labeling trees
- Discuss search algorithms for constrained optimization problems
- Introduce various heuristics for search algorithms