SEMINAR ABSTRACT ARGUMENTATION

Introduction to Formal Argumentation
* slides adapted from Stefan Woltran’s lecture on Abstract Argumentation

Sarah Gaggl

Dresden, 1st November 2013
Roadmap for the Lecture

- Introduction
- Abstract Argumentation Frameworks
- Complexity
- Implementation Techniques
- Extensions of Abstract Argumentation Frameworks
- Students’ Topics
Introduction

Argumentation:

...the study of processes “concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held”.

[Bench-Capon and Dunne, Argumentation in AI, AIJ 171:619-641, 2007]
Introduction

Argumentation:

...the study of processes “concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held”.

[Bench-Capon and Dunne, Argumentation in AI, AIJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with

- representation of an argument
- representation of the relationship between arguments
- solving conflicts between the arguments (“acceptability”)
Increasingly important area

- “Argumentation” as keyword at all major AI conferences
- dedicated conference: COMMA; several workshops
- specialized journal: Argument and Computation (Taylor & Francis)
- two text books:
Increasingly important area

- “Argumentation” as keyword at all major AI conferences
- dedicated conference: COMMA; several workshops
- specialized journal: Argument and Computation (Taylor & Francis)
- two text books:

Applications

- PARMENIDES-system for E-Democracy: facilitates structured arguments over a proposed course of action [Atkinson et al.; 2006]
- IMPACT project: argumentation toolbox for supporting open, inclusive and transparent deliberations about public policy
- Decision support systems, etc.
The Overall Process

<table>
<thead>
<tr>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting point: knowledge-base</td>
</tr>
<tr>
<td>Form arguments</td>
</tr>
<tr>
<td>Identify conflicts</td>
</tr>
<tr>
<td>Abstract from internal structure</td>
</tr>
<tr>
<td>Resolve conflicts</td>
</tr>
<tr>
<td>Draw conclusions</td>
</tr>
</tbody>
</table>
The Overall Process

Steps

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

Example

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$
The Overall Process

Steps

- Starting point: knowledge-base
- **Form arguments**
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

Example

\[\Delta = \{ s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s \} \]

\[\langle \{ w, w \rightarrow \neg s \}, \neg s \rangle\]

\[\langle \{ s, s \rightarrow \neg r \}, \neg r \rangle\] \[\langle \{ r, r \rightarrow \neg w \}, \neg w \rangle\]
The Overall Process

Steps
- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

Example

\[\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\} \]

\[
\{\{w, w \rightarrow \neg s\}, \neg s\} \\
\{\{s, s \rightarrow \neg r\}, \neg r\} \\
\{\{r, r \rightarrow \neg w\}, \neg w\}
\]
The Overall Process

Steps

• Starting point: knowledge-base
• Form arguments
• Identify conflicts
• Abstract from internal structure
• Resolve conflicts
• Draw conclusions

Example

\[\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\} \]

Diagram:

\[F_{\Delta} : \]

\[\alpha \rightarrow \beta \rightarrow \gamma \]
The Overall Process

Steps

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

Example

\[\Delta = \{ s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s \} \]

\[F_\Delta : \]

\[\text{pref}(F_\Delta) = \{ \emptyset \} \]

\[\text{stage}(F_\Delta) = \{ \{ \alpha \}, \{ \beta \}, \{ \gamma \} \} \]
The Overall Process

<table>
<thead>
<tr>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Starting point: knowledge-base</td>
</tr>
<tr>
<td>• Form arguments</td>
</tr>
<tr>
<td>• Identify conflicts</td>
</tr>
<tr>
<td>• Abstract from internal structure</td>
</tr>
<tr>
<td>• Resolve conflicts</td>
</tr>
<tr>
<td>• Draw conclusions</td>
</tr>
</tbody>
</table>

Example

\[\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\} \]

\[
\begin{align*}
\langle \{w, w\rightarrow \neg s\}, \neg s \rangle \\
\langle \{s, s\rightarrow \neg r\}, \neg r \rangle \\
\langle \{r, r\rightarrow \neg w\}, \neg w \rangle
\end{align*}
\]

\[
Cn_{pref}(F_\Delta) = Cn(\top)
\]

\[
Cn_{stage}(F_\Delta) = Cn(\neg r \lor \neg w \lor \neg s)
\]
Some Remarks

- Main idea dates back to Dung [1995]; has then been refined by several authors (Prakken, Gordon, Caminada, etc.)
- Separation between logical (forming arguments) and nonmonotonic reasoning ("abstract argumentation frameworks")
- Abstraction allows to compare several KR formalisms on a conceptual level ("calculus of conflict")
Some Remarks

- Main idea dates back to Dung [1995]; has then been refined by several authors (Prakken, Gordon, Caminada, etc.)
- Separation between logical (forming arguments) and nonmonotonic reasoning ("abstract argumentation frameworks")
- Abstraction allows to compare several KR formalisms on a conceptual level ("calculus of conflict")

Main Challenge

- **All Steps** in the argumentation process are, in general, intractable.
- This calls for:
 - careful complexity analysis (identification of tractable fragments)
 - re-use of established tools for implementations (reduction method)
Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]

- Given is a KB (a set of propositions) Δ
- argument is a pair (Φ, α), such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.
Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]

- Given is a KB (a set of propositions) Δ
- argument is a pair (Φ, α), such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

Example

$$\langle \{s, s \rightarrow \neg r\}, \neg r \rangle \rightarrow \langle \{r, r \rightarrow \neg w\}, \neg w \rangle$$
Classical Arguments [Besnard & Hunter, 2001]

- Given is a KB (a set of propositions) Δ
- argument is a pair (Φ, α), such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

Example

Other Approaches

- Arguments are trees of statements
- claims are obtained via strict and defeasible rules
- different notions of conflict: rebuttal, undercut, etc.
Dung’s Abstract Argumentation Frameworks

Example

\[\alpha \rightarrow \gamma \rightarrow \beta \]
Dung’s Abstract Argumentation Frameworks

Example

Main Properties

- Abstract from the concrete content of arguments but only consider the relation between them
- Semantics select subsets of arguments respecting certain criteria
- Simple, yet powerful, formalism
- Most active research area in the field of argumentation.
 - “plethora of semantics”
Dung’s Abstract Argumentation Frameworks

Definition

An **argumentation framework** (AF) is a pair \((A, R)\) where

- \(A\) is a set of arguments
- \(R \subseteq A \times A\) is a relation representing the conflicts (“attacks”)

Example

\[F = (\{a, b, c, d, e\}, \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}) \]
Dung’s Abstract Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair \((A, R)\) where
- \(A\) is a set of arguments
- \(R \subseteq A \times A\) is a relation representing the conflicts (“attacks”)

Example

\[F = (\{a, b, c, d, e\}, \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}) \]
Conflict-Free Sets

Given an AF \(F = (A, R) \).

A set \(S \subseteq A \) is conflict-free in \(F \), if, for each \(a, b \in S \), \((a, b) \notin R \).
Conflict-Free Sets

Given an AF $F = (A, R)$. A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

cf(F) = $\{\{a, c\}\}$,
Basic Properties

Conflict-Free Sets

Given an AF $F = (A, R)$. A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$$\text{cf}(F) = \{\{a, c\}, \{a, d\}\},$$
Basic Properties

Conflict-Free Sets

Given an AF $F = (A, R)$.
A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$c_f(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\}.$
Basic Properties

Conflict-Free Sets

Given an AF $F = (A, R)$.
A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$
Basic Properties (ctd.)

Admissible Sets [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is **defended** by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example:

```
b c d e a
adm(F) = \{\{a, c\}\}
```
Admissible Sets [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$adm(F) = \{\{a, c\}\}$,
Admissible Sets [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}, \{a, d\},$$
Admissible Sets [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

\[
\text{adm}(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\},
\]

TU Dresden, 1st November 2013 Seminar Abstract Argumentation slide 31 of 81
Basic Properties (ctd.)

Admissible Sets [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
- $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

![Diagram](image)

$adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$
Basic Properties (ctd.)

Dung’s Fundamental Lemma

Let S be admissible in an AF F and a, a' arguments in F defended by S in F. Then,

1. $S' = S \cup \{a\}$ is admissible in F
2. a' is defended by S' in F
Naive Extensions

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S \not\subset T$
Naive Extensions

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S \not\subseteq T$

Example

$naive(F) = \{\{a, c\}\}$
Semantics

Naive Extensions

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S \not\subset T$

Example

$$naive(F) = \{\{a, c\}, \{a, d\}\}$$
Naive Extensions

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S \not\subset T$.

Example

$$naive(F) = \{ \{a, c\}, \{a, d\}, \{b, d\} \},$$
Naive Extensions

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a naive extension of F, if
- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S \not\subseteq T$

Example

$naive(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$
Grounded Extension [Dung, 1995]

Given an AF $F = (A, R)$. The unique grounded extension of F is defined as the outcome S of the following “algorithm”:

1. put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;

2. remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.
Semantics (ctd.)

Grounded Extension [Dung, 1995]

Given an AF $F = (A, R)$. The unique grounded extension of F is defined as the outcome S of the following “algorithm”:

1. put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;
2. remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Example

```
ground(F) = \{ \{a\} \}
```

TU Dresden, 1st November 2013
Seminar Abstract Argumentation
slide 40 of 81
Complete Extension [Dung, 1995]

Given an AF \((A, R)\). A set \(S \subseteq A\) is complete in \(F\), if

- \(S\) is admissible in \(F\)
- each \(a \in A\) defended by \(S\) in \(F\) is contained in \(S\)

 Recall: \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).
Semantics (ctd.)

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is **complete** in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

```
\begin{array}{cccc}
a & \rightarrow & b & \rightarrow c \\
\rightarrow & & \rightarrow & \rightarrow \\
\end{array}
```

$comp(F) = \{\{a, c\}\}$,
Complete Extension [Dung, 1995]

Given an AF \((A, R)\). A set \(S \subseteq A\) is complete in \(F\), if

- \(S\) is admissible in \(F\)
- each \(a \in A\) defended by \(S\) in \(F\) is contained in \(S\)
 - Recall: \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).

Example

\[comp(F) = \{\{a, c\}, \{a, d\}\}, \]

TU Dresden, 1st November 2013 Seminar Abstract Argumentation
Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S

 Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

\[\text{comp}(F) = \{ \{a, c\}, \{a, d\}, \{a\} \}, \]
Semantics (ctd.)

Complete Extension [Dung, 1995]

Given an AF \((A, R)\). A set \(S \subseteq A\) is complete in \(F\), if

- \(S\) is admissible in \(F\)
- each \(a \in A\) defended by \(S\) in \(F\) is contained in \(S\)
 - Recall: \(a \in A\) is defended by \(S\) in \(F\), if for each \(b \in A\) with \((b, a) \in R\), there exists a \(c \in S\), such that \((c, b) \in R\).

Example

\[
\text{comp}(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{e\}, \{d\}, \emptyset\}
\]
Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Remark: Since there exists exactly one grounded extension for each AF F, we often write $\text{ground}(F) = \{S\}$ instead of $\text{ground}(F) = \{\}$.

TU Dresden, 1st November 2013 Seminar Abstract Argumentation slide 46 of 81
Semantics (ctd.)

Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Remark

Since there exists exactly one grounded extension for each AF F, we often write $\text{ground}(F) = S$ instead of $\text{ground}(F) = \{S\}$.
Preferred Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in F, $S \not\subseteq T$
Preferred Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in F, $S \not\subset T$

Example

$\text{pref}(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}$
Semantics (ctd.)

Stable Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$
Semantics (ctd.)

Stable Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$stable(F) = \{\{a, e\}\}$
Stable Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$stable(F) = \{\{a,e\}, \{a,d\}\}$,
Stable Extensions [Dung, 1995]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$$stable(F) = \{ \{a, e\}, \{a, d\}, \{b, d\} \},$$
Stable Extensions [Dung, 1995]

Given an AF \(F = (A, R) \). A set \(S \subseteq A \) is a stable extension of \(F \), if

- \(S \) is conflict-free in \(F \)
- for each \(a \in A \setminus S \), there exists a \(b \in S \), such that \((b, a) \in R\)

Example

\[
\text{stable}(F) = \{ \{a, e\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{e\}, \{d\}, \emptyset \}
\]
Some Relations

For any AF F the following relations hold:

1. Each stable extension of F is admissible in F
2. Each stable extension of F is also a preferred one
3. Each preferred extension of F is also a complete one
Semi-Stable Extensions [Caminada, 2006]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a semi-stable extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in F, $S^+ \not\subset T^+$
- for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$
Semi-Stable Extensions [Caminada, 2006]

Given an AF \(F = (A, R) \). A set \(S \subseteq A \) is a semi-stable extension of \(F \), if

- \(S \) is admissible in \(F \)
- for each \(T \subseteq A \) admissible in \(F \), \(S^+ \nsubseteq T^+ \)

- for \(S \subseteq A \), define \(S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\} \)

Example

\[
\text{semi}(F) = \{\{a, e\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}
\]
Stage Extensions [Verheij, 1996]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stage extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S^+ \not\subseteq T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$
Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stage extension of F, if
- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S^+ \not\subset T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF $F = (A, R)$. A set $S \subseteq A$ is an ideal extension of F, if
- S is admissible in F and contained in each preferred extension of F
- there is no $T \supset S$ admissible in F and contained in each of $\text{pref}(F)$
Stage Extensions [Verheij, 1996]
Given an AF $F = (A, R)$. A set $S \subseteq A$ is a stage extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in F, $S^+ \nsubseteq T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF $F = (A, R)$. A set $S \subseteq A$ is an ideal extension of F, if

- S is admissible in F and contained in each preferred extension of F
- there is no $T \supset S$ admissible in F and contained in each of $\text{pref}(F)$

Eager Extension [Caminada, 2007]
Given an AF $F = (A, R)$. A set $S \subseteq A$ is an eager extension of F, if

- S is admissible in F and contained in each semi-stable extension of F
- there is no $T \supset S$ admissible in F and contained in each of $\text{semi}(F)$
Semantics (ctd.)

Properties of Ideal Extensions

For any AF F the following observations hold:

1. there exists exactly one ideal extension of F
2. the ideal extension of F is also a complete one

The same results hold for the eager extension and similar variants [Dvořák et al., 2011].
Resolution-based grounded Extensions
[Baroni, Giacomin 2008]

A resolution β of an AF $F = (A, R)$ contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{(a, b), (b, a)\} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if

- there exists a resolution β such that $\text{ground}((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $\text{ground}((A, R \setminus \beta')) \subset S$
Resolution-based grounded Extensions
[Baroni,Giacomin 2008]

A resolution β of an AF $F = (A, R)$ contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{ (a, b), (b, a) \} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if
- there exists a resolution β such that $\text{ground}((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $\text{ground}((A, R \setminus \beta')) \subset S$

Example

$\text{ground}^*(F) = \{ \{a, c\} \}$,
Resolution-based grounded Extensions
[Baroni,Giacomin 2008]

A resolution β of an AF $F = (A, R)$ contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{(a, b), (b, a)\} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if
- there exists a resolution β such that $\text{ground}((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $\text{ground}((A, R \setminus \beta')) \subset S$

Example

$\text{ground}^*(F) = \{\{a, c\}, \{a, d\}\}$
Definition (Separation)

An AF $F = (A, R)$ is called separated if for each $(a, b) \in R$, there exists a path from b to a. We define $[[F]] = \bigcup_{C \in SCCs(F)} F|_C$ and call $[[F]]$ the separation of F.

Example
Definition (Separation)

An AF $F = (A, R)$ is called separated if for each $(a, b) \in R$, there exists a path from b to a. We define $[[F]] = \bigcup_{C \in SCCs(F)} F|_C$ and call $[[F]]$ the separation of F.
Definition (Reachability)

Let $F = (A, R)$ be an AF, B a set of arguments, and $a, b \in A$. We say that b is reachable in F from a modulo B, in symbols $a \Rightarrow^B_F b$, if there exists a path from a to b in $F|_B$.
Definition (Reachability)

Let $F = (A, R)$ be an AF, B a set of arguments, and $a, b \in A$. We say that b is reachable in F from a modulo B, in symbols $a \Rightarrow^B_F b$, if there exists a path from a to b in $F|_B$.

Definition ($\Delta_{F,S}$)

For an AF $F = (A, R)$, $D \subseteq A$, and a set S of arguments,

$$\Delta_{F,S}(D) = \{a \in A \mid \exists b \in S : b \neq a, (b, a) \in R, a \not\Rightarrow^A_D b\}.$$

By $\Delta_{F,S}$, we denote the lfp of $\Delta_{F,S}(\emptyset)$.
Given an AF $F = (A, R)$. A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([F - \Delta_{F,s}])$.

Example $S = \{c, f, h\}$, $S \in cf2(F)$.

TU Dresden, 1st November 2013 Seminar Abstract Argumentation slide 69 of 81
Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]

Given an AF \(F = (A, R) \). A set \(S \subseteq A \) is a cf2-extension of \(F \), if

- \(S \) is conflict-free in \(F \)
- and \(S \in naive([F - \Delta_{F,S}]) \).

Example

\(S = \{c,f,h\}, S \in cf(F) \).
cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]

Given an AF \(F = (A, R) \). A set \(S \subseteq A \) is a cf2-extension of \(F \), if

- \(S \) is conflict-free in \(F \)
- and \(S \in naive([[F - \Delta_F], S]]) \).

Example

\(S = \{c, f, h\}, \ S \in cf(F), \ \Delta_{F, S}(\emptyset) = \{d, e\} \).
cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in \text{naive}([[F - \Delta_{F,S}]]).$

Example

$S = \{c, f, h\}$, $S \in \text{cf}(F)$, $\Delta_{F,S}(\{d, e\}) = \{d, e\}$.

TU Dresden, 1st November 2013 Seminar Abstract Argumentation slide 72 of 81
cf2 Extensions [G & Woltran 2010]

Given an AF $F = (A, R)$. A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F - \Delta_{F,S}]]).

Example

$S = \{c, f, h\}$, $S \in cf(F)$, $\Delta_{F,S} = \{d, e\}$, $S \in naive([[F - \Delta_{F,S}]]).$
Relations between Semantics

Figure: An arrow from semantics σ to semantics τ encodes that each σ-extension is also a τ-extension.
Characteristics of Argumentation Semantics

Example

\[\text{pref}(F) = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\} \]
\[\text{naive}(F) = \{\{a, d, e\}, \{b, c, e\}, \{a, b, e\}\} \]

Natural Questions

- How to change the AF if we want \(\{a, b, e\}\) instead of \(\{a, b\}\) in \(\text{pref}(F)\)?
- How to change the AF if we want \(\{a, b, d\}\) instead of \(\{a, b\}\) in \(\text{pref}(F)\)?
- Can we have equivalent AFs without argument \(f\)?
Some Properties . . .

Theorem

For any AFs F and G, we have

- $\text{adm}(F) = \text{adm}(G) \implies \sigma(F) = \sigma(G)$, for $\sigma \in \{\text{pref}, \text{ideal}\}$;
- $\text{comp}(F) = \text{comp}(G) \implies \vartheta(F) = \vartheta(G)$, for $\vartheta \in \{\text{pref}, \text{ideal}, \text{ground}\}$;
- no other such relation between the different semantics (adm, pref, ideal, semi, eager, ground, comp, stable) in terms of standard equivalence holds.
Strong Equivalence [Oikarinen & Woltran 2011, G & Woltran 2011]

Definition

Two AFs F and G are strongly equivalent wrt. a semantics $\sigma \in \{\text{stable}, \text{adm}, \text{pref}, \text{ideal}, \text{semi}, \text{comp}, \text{ground}, \text{stage}\}$, in symbols $F \equiv^\sigma_s G$, iff $\sigma(F \cup H) = \sigma(G \cup H)$, for each AF H.

- Idea: Find “σ-kernels” of AFs, such that the σ-kernels of F and G coincide iff $F \equiv^\sigma_s G$.
- Verification of strong equivalence then reduces to checking syntactical equivalence
For any AFs F and G: $F^\kappa = G^\kappa$ iff $F \equiv_s^{\text{stable}} G$ iff $F \equiv_s^{\text{stage}} G$.
Exercises

1. Give an AF F such that $\text{stable}(F) = \emptyset$ and $\text{semi}(F) \neq \{\emptyset\}$.

2. Show that the following statement holds for any AF F.
 If $\text{stable}(F) \neq \emptyset$ then $\text{stable}(F) = \text{semi}(F) = \text{stage}(F)$.

3. Select three different semantics $\sigma, \sigma', \sigma''$ out of \{pref, ideal, semi, eager, ground, stable\} of your choice and provide three pairs of AFs such that
 - $\sigma(F_1) = \sigma(G_1)$ but $\sigma'(F_1) \neq \sigma'(G_1)$
 - $\sigma'(F_2) = \sigma'(G_2)$ but $\sigma''(F_2) \neq \sigma''(G_2)$
 - $\sigma''(F_3) = \sigma''(G_3)$ but $\sigma(F_3) \neq \sigma(G_3)$
P. Baroni, P. E. Dunne, and M. Giacomin.
On the resolution-based family of abstract argumentation semantics and its grounded instance.

P. Baroni and M. Giacomin.
Semantics of abstract argument systems.

T.J.M. Bench-Capon and P.E.Dunne.
Argumentation in AI,
AIJ 171:619-641, 2007

M. Caminada.
Semi-stable semantics.

M. Caminada.
Comparing two unique extension semantics for formal argumentation: ideal and eager

P. M. Dung.
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games.

P. M. Dung, P. Mancarella, and F. Toni.
Computing ideal sceptical argumentation.
W. Dvořák, P. Dunne, and S. Woltran.
Parametric properties of ideal semantics.

W. Dvořák and S. Woltran
On the intertranslatability of argumentation semantics

S. Gaggl and S. Woltran.
cf2 semantics revisited.

S. Gaggl and S. Woltran.
Strong equivalence for argumentation semantics based on conflict-free sets.

E. Oikarinen and S. Woltran.
Characterizing strong equivalence for argumentation frameworks.

B. Verheij.
Two approaches to dialectical argumentation: admissible sets and argumentation stages.