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Abstract. Ordered binary decision diagrams (BDDs) yield a data structure for

switching functions that has been proven to be very useful in many areas of com-

puter science. The major problem with BDD-based calculations is the variable

ordering problem which addresses the question of finding an ordering of the in-

put variables which minimizes the size of the BDD-representation. In this paper,

we discuss the use of genetic algorithms to improve the variable ordering of a

given BDD. First, we explain the main features of an implementation and report

on experimental studies. In this context, we present a new crossover technique

that turned out to be very useful in combination with sifting as hybridization

technique. Second, we provide a definition of a distance graph which can serve

as formal framework for efficient schemes for the fitness evaluation.

1 Introduction

Ordered binary decision diagrams (BDDs for short) are data structures to represent

switching functions that rely on a compactification of binary decision trees. More gen-

eral, using appropriate binary encodings, BDDs can serve to represent discrete func-

tions with a finite domain. They were first introduced by Lee [28] and Akers [1]. In the

meantime, various variants of BDDs have been suggested in the literature and applied

successfully in many areas of computer science. Most popular are Bryant’s (reduced)

ordered binary decisions diagrams [8] that require a fixed variable ordering on any

path. They have been proven to be very useful for the verification of reactive systems,

often called symbolic model checking [32, 10]. Other application areas of BDDs include

VLSI design, graph algorithms, complexity theory, matrix-operations, data bases, arti-

ficial intelligence, and many more. See e.g. the text books [36, 25, 18, 33, 48].

The crucial point with ordered BDD-based computations is the variable ordering

problem. For a wide range of switching functions, there are polynomial-sized BDDs

for “good” variable orderings, while the BDDs under “bad” variable orderings have

exponential size. Unfortunately, the problem of finding an optimal variable ordering

is NP-complete [45, 6]. However, there are many reordering algorithms that improve

the ordering of a given BDD. Most popular are Rudell’s sifting algorithm [41] and the

window permutation algorithm [21]. A first attempt to use genetic algorithms for the

variable ordering problem for BDDs was presented by Drechsler, Becker and Göckel

⋆ The paper is based on material of the diploma thesis by the first author Wolfgang Lenders

which he submitted in August 2004 at the Department of Computer Science, Universität Bonn.



[15] where the main genetic operations are partially-mapped crossover and mutation.

A related approach using simulated annealing was suggested by Bollig, Löbbing and

Wegener [5]. In experimental studies it turned out that these methods yield better re-

sults (smaller BDDs) than other dynamic reordering techniques, but they are compa-

rably slow, see e.g. [42]. To speed up the computations, several approaches have been

suggested, including advanced tricks for the parameter setting and treating sifting as a

genetic operation that replaces crossover techniques [16, 46], evolutionary algorithms

with learning heuristics [17], the use of computed tables and approximate fitness values

[24] or parallel genetic algorithms [12].

The goal of our paper is orthogonal to the above mentioned strategies by present-

ing alternative techniques to improve the efficiency and quality of genetic reordering

algorithms for BDDs, while still retaining the concept of crossover (in contrast to the

approaches of [16, 46]). We concentrate here on the purely genetic part of such reorder-

ing algorithms. However, the techniques suggested here can easily be combined with

other (non-genetic) methods to increase the efficiency, e.g. by using “ordinary” sifting

as in [16, 46].

Unlike [16, 46] which uses inversion as the only genetic recombination technique,

we discuss several crossover techniques and present a new one, called alternating cross-

over which attempts to maximize the benefits of hybridization, i.e., the combination of

a deterministic search algorithm with a genetic algorithm. The idea in the context of

BDD minimization relies in generating an interleaving of the parent’s variable order-

ings (alternating crossover) and moving the variables with the sifting-technique to the

next local optimum after (the hybridization step). Our experimental results show that

alternating crossover outperforms other recombination techniques such as order, par-

tially matched or cycle crossover and inversion, by means of the BDD-sizes, while no

significant differences in the runtime could be observed.

The second contribution is a formal framework to speed up the calculation of the

fitness values for the newly generated individuals. In fact, for the variable ordering

problem, calculating the BDD-size under a given variable ordering is a time-consuming

step. It is typically realized by a sequence of local (level-wise) reorganizations of the

BDD, the so called swap-operator (see e.g. [48]). Even when the final BDD is smaller

than the original one, an exponential blow-up for the intermediate BDDs is possible.

Thus, strategies that support the fitness calculation of the new population are highly de-

sirable. We introduce a formal notion of a distance graph, a weighted graph where the

nodes are orderings and the edges are labeled with the minimal number of swaps neces-

sary to transform one ordering into another one. Using (variants of) heuristic algorithms

for the traveling salesperson problem a “short” tour in the distance graph through the

newly generated orderings, for which the fitness values (BDD-sizes in our case) are re-

quired, yields an appropriate scheme for the fitness evaluation. The distance graph can

also serve as formal framework for other techniques that support the fitness calculation

as suggested in [24]. Moreover, the fitness computation via our visiting strategy can

easily be modified to weaken the drawback of crossover operations that might lead to

unfeasible BDD-sizes, e.g., if they generate individuals that are far from both parents

and combine the bad attributes of the parents.



Throughout the paper, we concentrate on the use of our algorithm for the minimiza-

tion of ordinary BDDs, but our methods are also applicable to other types of decision

diagrams, such as zero suppressed BDDs [36] algebraic decision diagrams, [2, 11] and

their normalized version [39], and other DD-variants.

Organization of the paper. The basic concepts of binary decision diagrams and no-

tations used in this paper are summarized in Section 2. Section 3 explains the main

concepts of our genetic algorithm and its implementation we used for the experimental

studies. Section 4 is concerned with alternating crossover. Our graph-based technique

to reduce the runtime for the fitness calculation are described in Section 5. In Section

6, we report on experimental results. Section 7 concludes the paper.

2 Binary decision diagrams

In the remainder of this paper, we fix a finite set Z = {z1, . . . ,zn} of boolean variables

and often refer to the variables by their indices (i.e., we identify index i with variable

zi). An evaluation for Z denotes a function that assigns a boolean value (0 or 1) to any

variable zi ∈ Z. By a switching function over Z, we mean a function f which maps

any evaluation for Z to 0 or 1. If z ∈ Z then f |z=0 and f |z=1 denote the cofactors of

f which arise by fixing the assignment z 7→ 0 and z 7→ 1 respectively. For instance, if

f = z1 ∧ (z2 ∨ z3) then f |z1=0 = 0 and f |z1=1 = z2 ∨ z3.

The fact that there is no data structure for switching functions that is efficient for all

switching functions becomes clear from the observation that the number of switching

functions over Z grows double exponentially in the size of Z. An explicit representation

of switching functions using truth tables seems coherent, but a truth table for a switching

function with n variables consists of 2n lines and consequently its space complexity

grows exponentially in the number of variables. Implicit descriptions, like propositional

logic formulas and binary decision diagrams can be much more efficient.

Binary decision diagrams are a graph based representation of switching functions

which rely on the decomposition of switching functions in their cofactors according to

the Shannon expansion f = (¬z∧ f |z=0)∨ (z∧ f |z=1). Formally, a BDD is an acyclic

rooted directed graph where every inner node v is labeled with a variable and has two

children, called the 0-successor and 1-successor. The terminal nodes are labeled with

one of the truth values 0 or 1. In ordered BDDs (OBDD) [8], there is a variable ordering

π = (zi1 , . . . ,zin) which is preserved on any path from the root to a terminal node. That

is, if v is an inner node labeled with variable ziℓ and w a child of v which is non-terminal

and labeled with variable zir then ziℓ appears in π before zir , i.e., iℓ < ir. In the sequel,

we shall use the notation π-OBDD to denote an OBDD relying on the ordering π and

we refer to any inner node labeled with variable z as a z-node.

The switching function represented by a terminal node agrees with the correspond-

ing constant 0 or 1. The switching function of a z-node v with 0-successor w0 and

1-successor w1 is fv = (¬z ∧ fw0
)∨ (z∧ fw1

). The switching function fB represented

by an OBDD B agrees with the switching function for its root node. Thus, given

an evaluation for Z, the truth value under fB is obtained by traversing B starting

in its root and branching in any inner node according to the given evaluation. Fig-

ure 1 depicts two π-OBDDs with the variable ordering π = (z1,z2,z3) for the function
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Fig. 1. OBDD and ROBDD

f = (z1 ∧¬z2 ∧ z3)∨ (¬z1 ∧ z3 ∧ z2) . In the OBDD on the left, both z3-nodes represent

the same cofactor, namely f |z1=0,z2=1 = f |z1=1,z2=0 = z3. Thus, a further reduction of

the shown OBDD is possible by identifying the two z3-nodes which yields the reduced

OBDD (ROBDD) shown on the right. Intuitively, A OBDD is called reduced if it does

not contain any redundancies. Formally, an ROBDD B denotes an OBDD such that

fv 6= fw for all nodes v, w in B with v 6= w. Given an π-OBDD, an equivalent π-ROBDD

is obtained by identifying terminal nodes with the same value, identifying z-nodes with

the same successors and eliminating all inner nodes where the 0- and 1-successor agree.

π-ROBDDs yield a universal representation for switching functions. (This follows

from the fact that the above reduction procedure applied to the decision tree for a switch-

ing function with ordering π yields an π-ROBDD.) Moreover, the representation by π-

ROBDDs is canonical up to isomorphism because the node-set of a π-ROBDD stands

in one-to-one correspondence to the set of cofactors f |zi1
=b1,...,zik

=bk
that can be ob-

tained from f by assigning values to the “first” variables of π. 1 (Here, the range for k

is 0,1, . . . ,n, and b1, . . . ,bk ∈ {0,1}.)

ROBDDs yield a minimized OBDD-representation for a given switching function,

provided the variable ordering is viewed to be fixed. However, by varying the ordering

π the size of the BDD can be influenced. Figure 2 illustrates this observation by display-

ing two ROBDDs for the same switching function f = (x1 ∧ x2)∨ (y1 ∧ y2)∨ (z1 ∧ z2)
using different variable orderings. In the worst case, a ROBDD can have exponential

size according to the number of variables n. There are functions, e.g. the middle bit

of multiplication, whose ROBDD representation has exponential size for every variable

ordering. Other functions, e.g. the most significant bit of addition, can vary between lin-

ear and exponential size depending on the chosen variable ordering while the number

of any ROBDD for symmetric functions (e.g. n-ary disjunction or the parity function)

is at most quadratic. See [9] and e.g. the text books [33, 48] for a detailed discussion of

the complexity of ROBDDs.

1 Some of these cofactors might agree in which case they are represented by the same node.
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Fig. 2. Two BDDs for the same switching function using different variable orderings

Shared BDDs. Most BDD-packages follow the approach of [35] who suggested the si-

multaneous representation of several switching functions in one reduced graph (called

shared or multi-rooted BDD) where the ROBDDs of the represented functions are re-

alized as subgraphs and share the nodes for common cofactors. With several additional

implementation tricks (appropriate hash tables, the ITE-operator to treat all boolean

connectives, negated edges, etc.) the manipulation of switching functions and other

BDD-based calculations can be realized efficiently, such as checking equivalence of

switching functions in constant time or performing boolean combinations in time poly-

nomial in the sizes of the ROBDDs for the arguments.

Throughout the paper the term BDD will refer to a shared BDD with negative edges.

(This also applies for the number of BDD-nodes in the experimental results.)

The Variable Ordering Problem. For the wide range of functions where the BDD-

sizes range from polynomial to exponential, the variable ordering has an immense im-

portance for BDD-applications, not only for reasons of memory requirement but also

for the runtime of BDD manipulation operations. Beside some heuristics that compute

a variable ordering from a given circuit description there is a wide range of dynamic

reordering algorithms that attempt to improve the given variable ordering. The problem

of finding an optimal variable ordering for a given BDD is known to be NP-complete

[45, 6]. The best known algorithm that determines an optimal variable ordering requires

exponential time [20]. However, there are several Greedy-heuristics that might return

a suboptimal ordering. All these reordering algorithms are based on sequentially ex-

changing pairs of neighboring variables. This basic swap operation induces only local

changes to the involved variables and can be carried out in constant time for each node



that has to be handled. Thus, the running time of the operation swap(z,z′) on the BDD

B with ordering π, where z and z′ are adjacent in π, is linear in the number of z-nodes

and the number of their incoming edges in B . Using appropriate sequences of swap

operations, any variable ordering can be transformed into another one.

One of the most commonly used deterministic heuristics for BDD minimization is

Rudell’s sifting algorithm [41] . The basic idea of sifting is to move each variable suc-

cessively through the whole variable ordering and eventually leave it at the position that

yields the best BDD size. This procedure can be repeated as long as the variable order-

ing changes (iterated sifting). Several additional heuristics can be used to improve the

efficiency of the sifting algorithm. Most popular is the use of a maximum growth factor

c which stops the movement of a variable in one direction if the BDD-size becomes c-

times larger than the original one. In our genetic algorithm, we shall use (non-iterated)

sifting as hybridization technique with small maximum growth factors c. With such a

choice for c, the sifting procedure is quite fast and searches the local optimum for any

variable in its neighborhood. In fact, we made good experience with a local search that

we obtain by choosing max growth factor c = 1.

Genetic algorithms for the variable ordering problem rely on a representation of the

variable orderings in permutation form. The main genetic operations used in the algo-

rithm proposed in [15] are (i) partially matched crossover (PMX) [22] which selects

a matching section between two cutpoints and uses exchange operations to make one

parent’s matching section assimilate the other’s, (ii) mutation which exchanges the po-

sitions of two variables, and (iii) inversion [26] which selects at random two cutpoints

and reverses the ordering in the enclosed segment. To improve the efficiency, [16, 46]

suggest to skip crossover techniques and use sifting as a “normal” operation instead,2

while [12] deals with a parallel genetic algorithms with PMX and mutation as main

operations. Other additional techniques to achieve a speed-up are proposed in e.g. [24].

Our approach where sifting serves as hybridization technique should be contrasted

to the approach of [16, 46] where sifting serves as a “normal” operation which is chosen

with a probability of 50% and executed with the maxgrowth factor c = 2. In our setting,

we deal with a minimized version of sifting that only serves for a local search in the

surrounding of an offspring generated by a crossover operation. In fact, by choosing

the maxgrowth factor c = 1 we only look for the nearest local optimum of any variable

which makes the sifting-phase much faster than with higher maxgrowth factors (such

as c = 2).

3 A genetic algorithm for the variable ordering problem

In this section, we summarize the main features of our implementation of a genetic

algorithm for the BDD minimization problem. We realized the standard schema for

evolutionary algorithms with hybridization, sketched in Figure 3, using several genetic

2 More precisely, the main “proper” genetic operation in [16, 46] is inversion, but they skip the

crossover techniques, and use mutation only if the offspring is equal to the parent element.

In [16] some additional problem-specific recombination and mutation operators have been

used for incompletely specified boolean functions. As we shrink our attention to completely

specified function these techniques are not applicable in our setting.



Genetic Algorithm with Hybridization

Input: Population p as a collection of individuals

Output: Individual i with “good” fitness

initialize(p)

evaluateFitness(p)

i = fittestElementOf(p)

REPEAT

selectParents(p)

recombination(p) (* crossover and inversion *)

mutation(p)

evaluateFitness(p) (* see section 5 *)

hybridization() (* sifting with maxgrowth c = 1 *)

i = fittestElementOf(p)

UNTIL(i was not improved)

Fig. 3. A hybrid genetic algorithm

operations. We adapted several techniques for evolutionary algorithms suggested some-

where else in the literature and developed a new crossover technique (see Section 4) as

well as a graph-algorithmic approach for the design of an efficient schema for the fitness

computation (see Section 5).

The population size is parametric in our implementation. Even for large circuits, we

made good experience with small population sizes, such as 8 individuals per population

(see Section 6). The initial population is chosen at random. Techniques that derive a

promising ordering from the topology of a circuit description (e.g. the fanin heuristic

[30] or weight heuristic [35]) could be used in addition. Also an improvement of the

initial population with deterministic reordering algorithms (such as sifting or window

permutation) could be integrated, as e.g. in [15].

Recombination. Beside the partially matched crossover (PMX) [22], which is also

used in [15] and [12], we consider three other crossover techniques. Order crossover

[13] chooses n/2 pairwise different positions and copies the genes at the selected posi-

tions to the offspring, and finally, fills up the gaps using the missing genes in the order

they are found in the second parent. In general, the offspring under order crossover

assimilates the first parent more than the second. Another version of order crossover in-

corporates cutpoints instead of randomly selected positions. Every element between the

two cutpoints is copied from the first parent, the elements outside the cutpoints are filled

up with the missing elements, preserving the second parents’ order. This variant has the

benefit of being less disruptive. Cycle crossover [38] attempts to retain the original posi-

tion of genes in their parents. This is achieved by continuous copying of genes from one

parent until the end of a cycle is reached, then switching and continuing from the other

parent. In rare occasions the offspring can be equal to one of its parents. This case has

to be combined with forced mutation to achieve a modification in the next generation.

In addition, we implemented alternating crossover, that will be explained in Section 4,



and the inversion operator [26], which reverses the fragment of a given variable ordering

between randomly chosen cutpoints, as an asexual recombination technique.

Mutation. Mutation of a permutation means the exchange of the positions of two vari-

ables by appropriate swap-operations. The approach we have chosen in our implemen-

tation first takes a general decision whether a given offspring is to be mutated or not.

If so, a level of mutation is chosen and expressed as a number of variable exchanges

to be executed. The positions of the variables to be exchanged are picked randomly,

also multiple selection of the same variable is possible. This approach is efficient in

implementation and execution, and it resembles the original mutation scheme. A forced

mutation in case a crossover does not generate (enough) differences between offspring

and parents is available. For measuring “differences”, a distance is defined in Section 5.

Fitness scaling. Choosing the BDD size as a natural measure for the fitness of a vari-

able ordering seems straightforward. Nevertheless the fitness values will be “negated”,

conducted by setting fitness(π) = max_bdd_size_found − bdd_size(π), for implemen-

tation reasons, which also retains the comfort of speaking of a higher fitness as a better

one, whereas a higher BDD size would imply a worse variable ordering. In Section 5,

we will explain our new scheme to minimize the number of swaps necessary for fitness

calculation by a distance minimizing strategy.

To handle the problem of premature convergence3 or the problem of fitness values

that are too close to each other (which can happen in “late” populations, also in the

non-premature case, in particular for small population sizes), we adapt the approach

of Goldberg [23] and use a linear scaling mechanism. That is, we replace the original

fitness function f by the scaling function f ′ = a f +b by first fixing f ′ (avg) to f (avg),
which ensures that each not less than average individual obtains a scaled value ≥ 1

and is therefore guaranteed a mating opportunity in a subsequent remainder selection

scheme. Toward the end of a GA’s run, the population has largely converged. In this

environment, the maximum fitness is generally close to the average fitness, whereas

recombination may generate lethals, i.e. individuals with a far below average fitness.

These individuals are likely to be scaled to negative fitness values. These exceptions

are caught and the affected individuals set to zero fitness. The resulting fitness values

are sampled using stochastic universal sampling [3, 4] by default, while other sampling

methods, such as roulette wheel selection or remainder sampling with or without re-

placement, are available upon selection.

A variant with the full sifting procedure. As pointed out in [16, 46], the efficiency

of evolutionary reordering algorithms as in Fig. 3 can be increased by using “ordinary”

sifting (with large maxgrowth factor, say c = 2) as an alternative in the recombination

phase. As mentioned before, the aim of our paper is to study the gain of the proper

genetic operators, and therefore, we do not consider this option here.

3 Premature convergence e.g. occurs if in the initial population one of the randomly selected

individuals represents a fairly good solution already which is far away from the other individ-

uals and if this “superhero” is chosen multiple times for mating and is going to spread its genes

throughout the population instantly.



Alternating Crossover

Input: Parents p1 and p2 of length n

Output: Offspring π

done = {}
candidate = p1.atPosition(0)

position_p1 = 0

position_p2 = 0

FOR (i = 0) TO (i = n−1) DO

WHILE (candidate ∈ done) DO

IF (i mod 2 = 0) THEN

candidate = p1.atPosition(position_p1)

position_p1 = position_p1 +1

ELSE

candidate = p2.atPosition(position_p2)

position_p2 = position_p2 +1

FI

OD

done∪{candidate}
π.atPosition(i) = candidate

OD

return π

Fig. 4. Alternating Crossover

4 Alternating crossover

We suggest a new crossover technique, called alternating crossover, which in combina-

tion with sifting as hybridization technique turned out to be very successful. Alternating

crossover generates offspring by copying genes alternately from the parents and inter-

leaves them this way. See Figure 4. This creates offspring in which genes that were ad-

jacent in one parent are generally separated by one or more genes from the other parent.

Under normal circumstances this disruption of schemata would be considered harmful,

but in conjunction with sifting with maxgrowth factor c = 1 as hybridization algorithm

it bears good results. Sifting performs swaps of neighboring variables and retains the

exchange if it was beneficial. This way, every separation of genes introduced during the

application of alternate crossover can be revoked if necessary, while on the other hand

many genes are tested in the surroundings of their current position. Therefore, alter-

nating crossover in conjunction with sifting exploits the offspring’s local neighborhood

thoroughly.

Figure 5 depicts an example of an alternating crossover application and highlights

the genes in the offspring that were adjacent in a parent and are now in sifting distance,

i.e. their distance is less than 2. Thus even our minimized sifting procedure is able to

restore the original ordering if necessary. (Here, we identify variable zi with its index

i.) We call two genes a and b in sifting distance, when they can be made adjacent by no

more than two exchanges of neighboring genes, i.e. when there are at most two genes



Fig. 5. Example for the operation of Alternating Crossover

between a and b. Our minimized sifting procedure moves each gene at least one step

in each direction and is therefore able to recover the original ordering should it have

been the most beneficial one. In the following example, let the original ordering with

adjacent genes a and b be better than the newly generated one:

original ordering: x a b y

newly generated by alternating crossover: a x y b

exchange neighboring variables a and x: x a y b

exchange neighboring variables b and y: x a b y

Since we said the original ordering to be the most beneficial one, sifting would have

executed exactly these two variable exchanges.

5 Fitness calculation via an optimized visiting order

Obtaining the actual fitness value for a variable ordering involves generating the cor-

responding binary decision diagram via an appropriate sequence of swap-operations.

This can be a costly procedure if the ordering differs clearly from the current order. To

minimize the number of swaps necessary for fitness calculation we suggest a strategy

that attempts to find an efficient visiting order of the individuals of the new population

(variable orderings) for which the fitness values (BDD-sizes) are still unknown.

In principle, fitness can be calculated at different times during the run of a genetic

algorithm. Calculating fitness for each individual directly after it has been generated has



the benefit of being able to decide about the individual’s fate at once. If, for example,

the offspring generated by a crossover is way worse than its parents it can be discarded

in favor of the better parent. On the other hand, this approach does not allow alterations

in the order the offspring is tested, which otherwise can be optimized. In the sequel, we

explain a strategy to optimize the visiting order of the individuals by providing a formal

definition for the distance between variable orderings.

A distance function for variable orderings. In the sequel, we identify any swap-

operation with the index of the variable to be swapped with its right neighbor. Thus,

for a variable set Z = {z1, . . . ,zn} of cardinality n, we denote any swap-operation by an

integer s ∈ {1, . . . ,n−1}. We write π ⊲s π′ to denote that swap-operation s transforms

the variable ordering π into the variable ordering π′. By a swap sequence, we mean any

finite sequence σ = (s1,s2, . . . ,sl) of swap-operations. We refer to |σ| = l as the length

of σ. σ is said to transform π into π′, denoted π ⊲σ π′, if the sequential composition of

the swaps si transforms π to π′, i.e.,

π ⊲σ π
′ if π ⊲s1

π1 ⊲s2
π2 . . .⊲sl

πl = π
′.

σ is called a minimum swap sequence for (π,π′) if σ transforms π to π′ and if there

is no shorter swap sequence than σ that also transforms π to π′. The distance δ(π,π′)
between two variable orderings π and π′ is defined as the length of a minimum swap

sequence for (π,π′). That is, δ(π,π′) = min
{

|σ| : π ⊲σ π′
}

.

Proposition 1. δ is a metric on the the set of variable orderings. That is,

1. δ(π,π′) = 0 if π = π′

2. δ(π,π′) = δ(π′,π)
3. δ(π,π′) ≤ δ(π, π̂)+ δ(π̂,π′)

The proof of Proposition 1 is straightforward and omitted here. The orderings with

maximum distance between each other are the pairs
(

π,π−1
)

, were π−1 is the inverse

ordering of π.

Proposition 2. If π and π′ are variable orderings for a variable set of cardinality n

then

δ(π,π′) ≤ δ(π,π−1) =
n(n−1)

2

Proof. The fact that δ(π,π′) ≤ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)
2

is clear as we may

consider the swap sequence which first moves the last variable of π′ with at most (n−1)
swaps at position n, then moves the variable at position n− 1 in π′ with at most n− 2

swaps at its final position n−1, and so on.

It remains to provide the argument why no swap sequence shorter than
n(n−1)

2
trans-

forms π into π−1. Let π and π′ be arbitrary orderings for variables z1, . . . ,zn and ki the

number of variables z j such that i 6= j and (i) zi occurs in π before z j and (ii) z j occurs

in π′ before zi. That is, π = (. . . ,zi, . . . ,z j, . . .) and π′ = (. . . ,z j, . . . ,zi, . . .). Then, any

swap sequence that transforms π into π′ has to perform at least ki swaps that exchange

zi with its right neighbor. Thus, δ(π,π′) ≥ k1 + . . .+ kn. In the case, π′ = π−1, we have

ki = n− i, Thus, δ(π,π−1) ≥ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)/2. �
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Deriving an efficient fitness calculation scheme from the distance graph. The above

proposition shows that inversion, a powerful genetic operation, requires a number of

swaps quadratic to the length of the inverted segment. This makes an immediate fitness

rating of the offspring less desirable in comparison to the opportunity to optimize the

order of visiting the individuals. Our strategy for reducing the number of variable swaps,

that have to be carried out for computing all fitness values by finding an advantageous

visiting order for the individuals, is based on a distance graph, a complete graph where

the individuals for which the fitness still has to be computed form the vertices, while the

edge between two vertices π1 and π2 is marked with their distance δ(π1,π2). (Because

of the symmetry of δ the distance graph can be viewed as an undirected graph.) An

example for a distance graph for three variables4 is provided in Figure 6. Usually, the

distance graph will not contain all possible vertices as suggested by the figure, but

only those vertices coding for members of the group of offspring whose fitness is still

unknown.

Now we could ask for an optimal visiting strategy for the individuals, i.e. a visiting

order that visits all nodes of the distance graph and which minimizes the sum of all

covered distances (the total number of swap operations which have to be carried out).

Since we are looking at an instance of the traveling salesperson problem, the question

for an optimal visiting order is computationally hard (NP-complete). Instead, we may

adapt any heuristic algorithms for the TSP to obtain an efficient, possibly sub-optimal

visiting order of the vertices in the distance graph. In our implementation, we employed

the nearest neighbor heuristic [34] to decide which individual is to be considered next

until all fitness values are computed. Our experiments showed that this procedure means

a major speed-up towards the regular visiting order, because the calculation of fitness

4 Again, we identify any variable with its index. E.g., node 123 stands for the ordering π =
(z1,z2,z3).



values is one of the most time-consuming but basic and irreplaceable parts of the mini-

mization algorithm.

A variant of the graph-based visiting schema. [16, 46] observed the problem that

variable orderings generated by the standard crossover techniques (PMX, OX or CX)

might lead to BDDs of unfeasible size. To avoid this problem, we suggest the following

variant of our visiting algorithm. If during the execution of a minimum swap sequence

from one vertex π to another vertex π′ of the distance graph the BDD-size is larger than

a certain threshold then we may discard π′ and, if necessary, generate a new variable or-

dering π′′ via genetic operations (recombination, mutation and sifting as hybridization

technique). In this case, of course, the visiting strategy has to be revised dynamically.

The threshold can either be a fixed upper bound for the BDD-size or can be determined

by a function depending on the fitness values that are already known. Another alterna-

tive for the threshold is to use a maxgrowth factor (as it is standard for sifting) for the

swap sequences that are executed in the visiting strategy.

In addition, the best intermediate ordering π̂, obtained by executing the minimum

swap sequence from node π to node π′ in the distance graph, can be used as an additional

candidate for the next generation, provided it is better than π and π′.

Integration of other advanced techniques. Our graph-algorithmic approach for the

fitness computation can easily be modified to integrate the three methods suggested

by Günther and Drechsler [24] to accelerate evolutionary algorithms for sequencing

problems.

(1) For an approach where the BDDs for several variable orderings are stored to speed

up the fitness calculations (as proposed by [24]) we may also deal with a distance

graph, but now equipped with another weight function for the edges. Let π1, . . . ,πm

be the variable orderings for which corresponding BDDs are stored. Then, we may

use the weight function δ̂(π,π′) = min
{

δ(π,π′), δ(πi,π
′) : i = 1, . . . ,m

}

which

captures the possibility to start the computation of the π′-BDD with one of the

stored BDDs rather than the π-BDD.
(2) Following [24], we may also use computed-tables that store the BDD-sizes for

already considered variable orderings. In our setting, this means a simplification of

the distance graph which only contains the orderings not considered so far.
(3) The third method suggested in [24] relies on the use of upper and lower bounds

for the BDD-sizes that will be obtained through local modifications of the ordering

[7]. As shown in [24], this technique in combination with multiple representation

as in (1) and computed-tables as in (2) can lead to a speed-up around 80%. This

idea can be integrated in our graph-based approach by choosing a constant d and

modifying the visiting strategy as follows: If the current node is π then we use such

approximate fitness values rather than the precise BDD-sizes for all (possibly, but

one) orderings π′ with δ(π,π′) ≤ d.

6 Experimental results

To evaluate the performance of the several recombination techniques (crossover, inver-

sion) and the influence of the parameter setting, we implemented the schema sketched



benchmark original inputs outputs

BDD size

apex1 6785 45 45

apex2 13418 38 3

apex3 53365 54 50

apex4 1040 9 19

apex5 3944 114 88

apex6 1993 135 99

apex7 1775 49 37

comp 203198 32 3

cps 1869 24 109

dalu 11178 75 16

benchmark original inputs outputs

BDD size

des 10771 256 245

duke2 596 22 29

e64 1500 65 65

ex4p 994 84 28

i5 1032 133 66

i6 388 138 67

i7 559 199 67

i8 10366 133 81

vg2 735 25 8

Fig. 7. Benchmarks

in Fig. 3. For all tests we used excerpts of the LGSynth93 benchmark suite (see Fig. 7),

obtainable from [31]. We carried out ten runs of our genetic algorithm and present the

average BDD size as well as the best result we obtained, in order to visualize the vari-

ation in the results. The indicated time shows CPU seconds on a Pentium IV 2.4 GHz

PC with 512 MB of RAM running the JJS-BDD package [27] on Linux.

Unless stated otherwise, in all tests the parameters of our genetic algorithm were

chosen as follows. The population size is 8, the maxgrowth factor for hybrid sifting

is c = 1. We carried out experiments with growth factors of 1.1 and 1.2 (not shown

here), which resulted in almost identical5 results, but bearing a longer runtime. For the

selection method, we used stochastic universal sampling and realized the concept of

elitarism for one individual.

Comparison of the crossover operators. To compare the types of crossover (OX,

PMX, CX and AX) and inversion, we restricted our algorithm to the use of a single

operator. An inspection of the results for the five operators in Fig. 8 yields that the

runtimes all assimilate each other. To compare the quality of the results we take only

the best BDD size achieved during the ten runs into account.

order partially matched alternating cycle inversion

11 14 17 7 7

The above table illustrates for how many benchmark circuits each crossover yielded a

best result. (If more than one crossover achieved the best result we awarded a point to

each of them.) Thus, alternating crossover bears the best results, followed by partially

matched crossover. The combination of different crossover operators is, however, the

most promising approach, since the sequential application of different crossovers on the

same individual allows more possible outcomes than repetitive application of the same

operator. This can also be seen from the results shown in the left column of Fig. 10.

5 One benchmark resulted in a BDD two nodes smaller. sizeavg results were slightly better in

most benchmarks.



order partially matched alternating cycle inversion
Benchmark

size sizeavg time size sizeavg time size sizeavg time size sizeavg time size sizeavg time

apex1 1253 1255 40 1246 1258 52 1250 1253 39 1270 1270 33 1246 1253 101

apex2 354 372 32 318 327 54 328 338 22 321 345 23 392 395 22

apex3 841 841 20 839 841 28 839 841 23 841 841 20 840 841 30

apex4 889 889 2 889 889 2 889 889 2 889 889 2 889 889 2

apex5 1044 1044 85 1044 1050 113 1044 1044 72 1073 1082 50 1086 1092 68

apex6 523 532 58 513 527 89 510 531 55 524 531 78 575 587 81

apex7 214 214 6 214 214 6 214 214 6 216 217 5 214 214 6

comp 101 107 33 110 125 28 101 110 36 122 144 37 143 143 20

cps 971 971 18 971 972 12 971 974 13 977 976 10 1010 1010 14

dalu 785 798 157 689 689 248 689 701 138 689 689 205 699 711 192

des 2983 3012 988 2971 2977 723 2958 2974 756 2992 3015 601 2987 2992 953

duke2 336 336 3 336 336 4 336 336 4 336 352 3 336 336 4

e64 129 129 12 129 129 12 129 129 12 129 129 11 129 129 16

ex4p 463 468 16 466 471 26 459 470 16 460 481 17 465 468 21

i5 134 134 17 134 134 16 134 134 18 134 134 18 134 134 35

i6 209 209 14 209 209 15 209 209 15 209 209 14 209 209 14

i7 334 334 39 333 333 59 333 335 50 334 335 52 335 335 38

i8 1277 1280 163 1280 1281 196 1277 1281 149 1285 1344 150 1280 1281 206

vg2 80 80 2 80 80 2 80 80 2 84 84 2 84 84 3

Fig. 8. Comparison between five recombination operators

For several benchmarks the best result is obtained using a combination of crossovers,

in ex4p for example, the combination reaches a BDD size of 242 BDD nodes, while the

best result of a single operator, in this case alternating crossover, is 459 BDD nodes.

Other examples for the superiority of a combination of crossovers to the use of a single

operator are apex1, apex3, comp and des.

Given our results on the comparison of the recombination techniques (Fig. 8), we

argue that the restriction to inversion as the only proper genetic operation in the re-

combination phase as suggested in [16, 46] shrinks the gain of evolutionary reorder-

ing techniques. The motivation given in [16, 46] for omitting crossover techniques was

their excessive runtime requirements. However, a comparison of the the time-columns

in Fig. 8 shows that – in combination with our graph-based fitness evaluation technique

– the crossover techniques are in average no worse than inversion. (Additionally, the

generation of too large BDDs can be prevented as described in Section 5.)

Parameter setting. To illustrate the benefits of our parameter setting and graph-based

fitness evaluation technique, we performed tests where we used the parameter setting

used in [15]. Here, the population size is set to min{120,3 ·population size}. The max-

imum growth factor for hybrid sifting is set to c = 2. Elitarism is applied to the better

half of the population. The results in Figure 9 demonstrate that the alternative choice

of parameters rarely achieves a better result than our choice. The best result, obtained

for benchmark apex2, is only four nodes smaller than our result. On the other hand,

the alternative parameters results in a runtime which exceeds ours generally by factor

10 to 20. In summary, as Figure 9 shows, our genetic algorithm with crossover and the

graph-based visiting strategy performs very well, already with a small population size.

Comparison of our genetic algorithm with “pure sifting”. For a comparison of the

schema in Fig. 3 which only uses crossover (but no inversion) against deterministic re-

ordering heuristics, we assigned probability 0.6 to alternating crossover, and 0.2 to both



regular parameters alternative parameters
Benchmark

size time size time pop. size

apex1 1246 31 1244 828 120

apex2 306 25 302 433 114

apex3 837 24 837 397 120

apex4 889 2 889 5 27

apex5 1044 62 1044 793 120

apex6 498 45 507 601 120

apex7 214 7 214 62 120

comp 95 33 125 221 96

cps 971 11 971 58 72

dalu 689 230 689 1733 120

des 2941 1173 2946 9229 120

duke2 336 4 336 19 66

e64 129 11 129 103 120

ex4p 242 27 460 182 120

i5 134 16 134 204 120

i6 209 15 209 143 120

i7 333 52 333 408 120

i8 1277 187 1277 4366 120

vg2 80 2 80 11 75

Fig. 9. Regular versus alternative parameters

partially matched and cycle crossover. We obtained similar results when cycle crossover

is replaced with order crossover or when assigning the same weight to them. As before,

the maxgrowth factor for hybrid sifting is 1. On the other hand, we considered sifting

and iterated sifting with maxgrowth factor 1.3. Using our genetic algorithm, the result-

ing BDD in general is considerably smaller than it is after application of sifting. In

some examples like apex2 and dalu we even achieve a bisection of the BDD’s size. In

no case is the best result of ten GA runs worse then the result achieved by sifting. This

positive result is obtained at the expense of runtime, which in average is an order of

magnitude higher than it is for sifting, on the other hand for benchmarks comp and dalu

the runtimes for sifting even exceed those of our GA. In average, however, runtime for

our GA is longer, though it generates a substantially smaller BDD.

In his diploma thesis [29], the first author also reports about experiments with the

window permutation algorithm [21]. The obtained results agree with the common obser-

vation that window permutation is fast but a rather weak minimization heuristic. Thus,

our genetic algorithm yields much better results in terms of quality, in some cases, like

comp, des and dalu for instance, the BDD-sizes were even only a fraction (< 1%) of

those returned by window permutation, on the price of a longer computation time.



genetic algorithm sifting siftingiterBenchmark
size sizeavg time size time size time

apex1 1246 1269 31 1381 0.5 1270 3

apex2 306 342 25 589 0.5 502 2

apex3 837 864 24 851 0.2 850 0.8

apex4 889 889 2 889 0.1 889 0.1

apex5 1044 1076 62 1076 0.7 1073 2

apex6 498 569 45 532 0.6 520 3

apex7 214 241 7 297 0.1 248 0.2

comp 95 112 33 95 56 95 68

cps 971 971 11 1010 0.2 1010 0.3

dalu 689 697 230 1552 478 1346 534

des 2941 2968 1173 3242 36 3051 39

duke2 336 340 4 395 0.1 360 0.3

e64 129 129 11 155 0.2 129 0.4

ex4p 242 242 27 512 0.2 507 0.6

i5 134 134 16 134 0.3 134 0.6

i6 209 209 15 215 0.3 209 2

i7 333 334 52 335 0.9 335 2

i8 1277 1280 187 2104 2 2092 5

vg2 80 80 2 157 0.1 152 0.9

Fig. 10. Comparison between our genetic algorithm and sifting

7 Conclusion

The goal of the paper was to study in detail the gain of genetic operations in the context

of dynamic reordering algorithms for BDDs. We discussed several crossover variants

and suggested a new one, called alternating crossover, which turned out to be very useful

in combination with a “minimized version” of sifting as hybridization technique. In

addition, we proposed a graph-algorithmic approach to speed up the fitness evaluation

which, in case of the variable ordering problem for BDD, is a time-consuming step.

In contrast to the observations made by [16, 46] our experiments (see Section 6) show

that a random selection between crossover techniques and inversion yields better results

than the sparse use of “proper” genetic operations as in [16, 46].

Using the proposed techniques, runtime requirements for genetic reordering algo-

rithms were brought down to a reasonable level, although, concerning the computation

time, our techniques are still not competitive to deterministic reordering heuristics such

as sifting or window permutation. However, our approach nicely fits in the framework

of Drechsler et al. [16, 46] who pointed out that the mixture of genetic techniques with

ordinary sifting yields a good balance between speed and quality, as it captures the

advantages of both genetic algorithms and comparably fast deterministic reordering

algorithms. In addition, we explained that other methods that improve the efficiency,

e.g. those suggested in [24], can easily be integrated.



There are various directions in which our algorithm (and its implementation) could

be extended. Although we made good experience dealing with sifting and maxgrowth

factor 1 as hybridization technique, window permutation is another candidate. Another

direction is the consideration of a group-preserving variant of our algorithm. In fact,

there are several BDD-applications where not all variable permutations should be re-

garded as potential solutions, but only those that group together certain variables. One

example are switching functions with symmetric inputs where typically good orderings

put the variables of any symmetry group together. Group-preserving orderings play also

a crucial role for symbolic model checking where there are several good reasons (see

e.g. [19]) to group any state-variables and its copy (the corresponding next-state vari-

able) together. For such applications where we are given disjoint groups of variables,

such that for some application-dependent reasons6 the variables in either group should

be placed together, we suggest to apply the same genetic operations (crossover, muta-

tion, inversion) but with groups of variables rather than single variables. E.g., in case of

alternating crossover, we may apply the schema shown in Figure 4 with groups of vari-

ables rather than single variables. In a similar way, the other crossover techniques can

be modified to treat groups of variables. In the hybridization step, we may apply group

sifting [40] which relies on the same schema as sifting but moves groups of adjacent

variables rather than single variables.

Another future direction is to check whether the concepts of alternating crossover

and the graph-algorithmic approach for the fitness calculation are also useful for other

permutation-problems.
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