
Weak Bisimulation for Fully ProbabilisticProcessesChristel Baier1 and Holger Hermanns21 Fakult�at f�ur Mathematik & Informatik, Universit�at Mannheim, Germanye-mail: baier@pi1.informatik.uni-mannheim.de2 Informatik VII, Universit�at Erlangen, Germanye-mail: hrherman@informatik.uni-erlangen.deAbstract. Bisimulations that abstract from internal computation haveproven to be useful for veri�cation of compositionally de�ned transitionsystem. In the literature of probabilistic extensions of such transitionsystems, similar bisimulations are rare. In this paper, we introduce weakbisimulation and branching bisimulation for transition systems wherenondeterministic branching is replaced by probabilistic branching. Incontrast to the nondeterministic case, both relations coincide. We give analgorithm to decide weak bisimulation with a time complexity cubic inthe number of states of the transition system. This meets the worst casecomplexity for deciding branching bisimulation in the nondeterministiccase.1 IntroductionIn recent years, the need to formally reason about probabilistic phenomena insoftware and hardware systems has incented the study of probabilistic models ofcomputation. A variety of models has been proposed in the literature, most ofthem based on transition systems. These models can be classi�ed with respectto their treatment of nondeterminsm. Several approaches replace the concept ofnondeterministic branching by probabilistic branching, e.g. [9, 19, 26, 13, 36],whereas others allow for both, nondeterministic as well as probabilistic branch-ing, e.g. [34, 31, 17, 23, 33]. Following [13], the former model can be subdividedaccording to the relationship between occurences of actions and transition proba-bilities. In \reactive" systems, transition probability distributions are dependenton the occurrences of actions. In contrast, in \generative" (also called \fully prob-abilistic") systems (which can be viewed as discrete Markov chains labelled withactions), these distributions implicitly assign probabilities also to occurrences ofactions. \Strati�ed" systems allow for levelwise probabilistic branching.Veri�cation techniques for such models have been inspired by succesful ex-periences in the nonprobabilistic case. This includes probabilistic variants oftemporal logics, e.g. [2, 5, 11, 17, 19, 20, 31, 32, 34, 35]. Another research strandfocusses on equivalences and preorders used to established that one system \im-plements" another, according to some notion of implementation, such as strongbisimulation [26], simulation [22, 33], testing preorders [7, 8, 9, 23, 37, 36], trace,



failure and ready equivalence [24]. For mechanised veri�cation purposes, the com-plexity of deciding such equivalences for �nite state systems is a crucial aspect.In the nonprobabilistic case, for instance, (strong) bisimulation can be decided intime O(m � logn) [30] where n is the number of states and m the number of tran-sitions in the underlying transition system. Most of the coarser equivalences arePSPACE-complete [25]. In the probabilistic framework, the situation is slightlydi�erent. Most of the equivalences for probabilistic processes (e.g. strong bisim-ulation or trace, failure, ready and testing equivalence) can be decided in timepolynomial in the size of the probabilistic transition system [8, 21, 3].Several authors mentioned that the de�nition of a weak bisimulation that ab-stracts from internal computation is desirable, but problematic in a probabilisticsetting [24, 17]. In the nonprobabilistic case, weak bisimulation [29] is fundamen-tal for compositional veri�cation methods that exploit abstraction from internalcomputation (see [6] for an impressive example). The time complexity for de-ciding weak bisimulation is O(n2:3), using the transitive closure operation from[10]. Branching bisimulation [14] is a slightly �ner relation for the same pur-pose, it has time complexity O(n �m) (but a better space complexity than weakbisimulation) [15]. To the best of our knowledge, [33] is the only paper that in-troduces notions of weak and branching bisimulation for probabilistic transitionsystems. Their model can be seen as a generalization of reactive transition sys-tems, since transition probability distributions are dependent on occurences ofactions, but nondeterministic choices between di�erent distributions are possi-ble for the same action. The de�nition of weak and branching bisimulation �a la[33] replaces Milner's \double arrow relation" (the transitive, reexive closure ofinternal transitions) by assigning a (possibly in�nite) set of distributions to eachstate. For a given state, this set represents the (nondeterministic) alternatives ofprobability distributions on those states that are reachable by sequences of inter-nal transitions. In contrast to the nonprobabilistic case, the transitions involvedform a tree rather than a linear chain. It seems to be hard to adapt this no-tion to other types of probabilistic transition systems, such as fully probabilisticsystems.In this paper, we propose notions of weak bisimulation and branching bisimu-lation for fully probabilistic transition systems that appear to be rather naturalextensions of the corresponding relations in the nonprobabilistic case. We re-place Milner's \double arrow relation" by the probabilities to reach states viasequences of internal transitions. In contrast to the nonprobabilistic case wherebranching bisimulation is strictly �ner than weak bisimulation, these two rela-tions coincide in the fully probabilistic case. We present an algorithm to computethe weak bisimulation equivalence classes in time O(n3) where n is the numberof states in the underlying probabilistic transition system. It is worth noting thatthis is the same worst case complexity as computing the branching bisimulationequivalence classes of a nonprobabilistic transition system [15].The paper is organized as follows. In Section 2 we introduce basic notationsand properties of fully probabilistic transition systems. Section 3 introduces weakand branching bisimulation and shows that both coincide. Section 4 is devoted



to an algorithm to compute weak bisimulation equivalence classes. Section 5indicates directions for further work. Due to space constraints we only providesketches of proofs. The complete proofs are contained in [4].2 Fully probabilistic transition systemsIn this section we introduce fully probabilistic transition systems together withsome de�nitions and notations that will be useful in the sequel.A fully probabilistic transition system is a tuple (S;Act; P ) where S is a�nite set of states, Act a set of actions that contains the internal action � (whichrepresents any invisible computation) and P : S � Act � S ! [0; 1] a functionsuch that P(a;t)2Act�S P (s; a; t) = 1 for all s 2 S. In what follows, we usearabic letters a; b; : : : to denote (internal or non-internal) actions, greek letters�; �; : : : to denote non-internal actions. For C � S, we de�ne P (s; a; C) =Pt2C P (s; a; t). An execution fragment is a �nite \sequence" � = s0 a1! s1 a2!s2 a2! : : : ak! sk such that s0; s1; : : : ; sk 2 S, a1; : : : ; ak 2 Act and P (si�1; ai; si) >0, i = 1; : : : ; k. We de�ne last(�) = sk, first(�) = s0, length(�) = k, trace(�) =a1a2 : : : ak andProb(�) = P (s0; a1; s1) � P (s1; a2; s2) � : : : � P (sk�1; ak; sk):An execution in (S;Act; P ) is an in�nite \sequence" � = s0 a1! s1 a2!s2 a2! : : : where s0; s1; : : : ;2 S, a1; a2; : : : 2 Act and P (si�1; ai; si) > 0,i = 1; 2; : : :. We de�ne first(�) = s0, and �(k) = sk. �(k) = s0 a1! s1 a2!: : : ak! sk is called the k-th pre�x of �. For � to be an execution fragmentwith length(�) = k, let � " be the set of executions � with �(k) = �.Example 1. A fully probabilistic transition sys-tem with 8 states and Act = f�; �; �g. IfP (s; a; t) is di�erent from zero, its value isannotated to an a-transition joining s and t.To illustrate the above de�nitions, we calculateP (s2; �; fs3; s4; s5g) = 0:9: Concerning the exe-cution � = s0 �! s1 �! s3 �! s6 �! s5 �! s5 �! : : :,we have Prob(�(3)) = 0:5 � 0:6 � 0:1 = 0:003 andtrace(�(3)) = ���. s6s2 s5 s7s4s0 � �� � 1� 0.51�
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We suppose the reader to be familiar with basic notions of probability theory(see e. g. [16]). For �xed s 2 S, we de�ne a probability space on the executionsstarting in s: Let Exec(s) be the set of executions starting in s (i.e. the set ofexecutions � with first(�) = s), ExecFrag(s) the set of execution fragments� with first(�) = s. Let �(s) be the smallest sigma �eld on Exec(s) whichcontains the basic cylinders � ", � 2 ExecFrag(s), and let P be the uniqueprobability measure on �(s) with P(� ") = Prob(�): For � � Act�, C � S, wede�ne Exec(�;C) to be the set of executions � that lead from first(�) to a statein C via a sequence of actions belonging to �. Formally, if � = s0 a1! s1 a2! : : : is



an execution then � 2 Exec(�;C) i� there is some k � 0 with trace(�(k)) 2 �and sk 2 C. Let Exec(s; �; C) = Exec(�;C) \ Exec(s). Clearly, Exec(s; �; C)is measurable in �(s) as Exec(s; �; C) = S� � " where � ranges over allexecution fragments starting in s such that trace(�) 2 � and last(�) 2 C. Theprobabilities P(s; �; C) = P(Exec(s; �; C)) solve the equation system:P(s; �; C) = 1 if s 2 C and " 2 �P(s; �; C) = X(a;t)2Act�S P (s; a; t) � P(t; �=a; C) otherwisewhere �=a = f� : a� 2 �g. Here, " denotes the empty word in Act�. If t 2 Sthen we write P(s; �; t) rather than P(s; �; ftg). In what follows, we identify aregular expression (e.g. ��, ��� or �����) with the corresponding set of traces.For instance, P(s; ��; C) denotes the probability to reach C from s via internalactions.Example 2. For the fully probabilistic transition system of Example 1, we calcu-late P(s1; �����; fs5; s6; s7g) = 0:4 � 0:8 � 1 + 0:6 � (0:4 � 1 + 0:5 � 0:8 � 1) = 0:8.3 Weak and branching bisimulationIn this section we de�ne weak and branching bisimulation for fully probabilistictransition systems. While in the nonprobabilistic case branching bisimulation isstrictly �ner than weak bisimulation, these two relations coincide in the fullyprobabilistic case.For the de�nition of weak bisimulation, we replace Milner's \double arrow"relation ) (the transitive, reexive closure of �!) by the function P(s; ��; t),which assigns to each pair (s; t) of states the probability to reach state t from svia internal actions. Similarly, for � 2 Act n f�g, we deal with the probabilitiesP(s; �����; t) rather than Milners weak transition relations ) �!). In whatfollows, we �x a fully probabilistic transition system (S;Act; P ).De�nition 1. A weak bisimulation on (S;Act; P ) is an equivalence relation Ron S such that for all (s; s0) 2 R, � 2 (Actnf�g)[f"g and all equivalence classesC 2 S=R: P(s; �����; C) = P(s0; �����; C):(Note that " denotes the empty trace and that ��"�� = ��.) Two states s, s0are called weakly bisimulation equivalent (denoted by s � s0) i� (s; s0) 2 R forsome weak bisimulation R.Example 3. For the system of Example 1, the smallest equivalence relationR which identi�es the states s5; s6; s7 and s1; s3; s4 is a weak bisimula-tion. To illustrate this, we compute, for instance, P(s4; �����; C567) = 0:2,as well as P(s3; �����; C567) = 0:5 � P(s4; �����; C567) + 0:1 = 0:2 and



P(s1; �����; C567) = 0:4 � P(s4; �����; C567) + 0:6 � P(s3; �����; C567) = 0:2where C567 = fs5; s6; s7g. As a whole, we obtain the following values of P (whereC134 = fs1; s3; s4g) indicating that the states s5; s6; s7 and s1; s3; s4 are weaklybisimulation equivalent.P fs0g fs2g C134 C567 fs0g fs2g C134 C567 fs0g fs2g C134 C567�� ����� �����s5 (also s6, s7) 0 0 0 1 0 0 0 0 0 0 0 0s1 (also s3, s4) 0 0 1 0 0 0 0 0:2 0 0 0 0:8s2 0 1 0 0 0 0 0 0:1 0 0 0:5 0:4s0 1 0:5 0:5 0 0 0 0 0:15 0 0 0:25 0:6It can be shown that � is a weak bisimulation. In the nonprobabilistic case,it holds for weakly bisimulation equivalent states s; s0 that if s �1:::�k=) t thens0 �1:::�k=) t0 such that t and t0 are weakly bisimulation equivalent. Here, �1:::�k=)denotes )�1!) : : :)�k!). This result carries over to the probabilistic case.Theorem2. Let � be a regular expression of the form ���1���2�� : : : ���k or���1���2�� : : : ���k��. Then:If s � s0 then P(s; �; C) = P(s0; �; C) for all C 2 S= �.Proof. by induction on k. The basis of induction (k = 1) follows by the factthat, for each state s, the vector (P(s; ���;C))C2S=� is the unique solution ofthe linear equation system x �A = a where A = (P(C; ��; C 0))C;C02S=� and a =(P([s]; �����; C 0)C02S=�. Here, [s] denotes the weak bisimulation equivalenceclass of s and P(C; �����; C 0) = P(t; �����; C 0) for some (all) t 2 C. Theinduction step follows by the induction hypothesis, the basis of induction andthe fact thatP(s; ���1�� : : : ���k; C) = XA2S=� P(s; ���1; A) � P(A; ���2�� : : : ���k; C)and P(s; ���1�� : : : ���k��; C) = PA2S=�P(s; ���1���2�� : : : ���k; A) �P(A; ��; C). 2Van Glabbeek & Weijland [14] introduces branching bisimulation which isstrictly �ner than weak bisimulation. The basic idea of branching bisimulation isthat in order to simulate a step s �! t by an equivalent state s0, s0 is allowed toperform arbitrary many internal actions leading to a state which is still equiva-lent to s (i.e. the intermediate states before s0 also fall in the equivalence classof s and s0) and then to perform � reaching a state t0 which is equivalent to t. Inthe probabilistic case, we require that for equivalent states s, s0, the probabilitiesfor s and s0 to perform internal actions inside the equivalence class of s and s0and then to perform a visible action � leading to state of a certain equivalenceclass C are the same.



De�nition 3. A branching bisimulation on (S;Act; P ) is an equivalence relationR on S such that PR(s; ���;C) = PR(s0; ���;C)for all (s; s0) 2 R, C 2 S=R and � 2 (Act n f�g) [ f"g. Here, PR(s; ���;C) =P(ExecR(s; ���;C)) and ExecR(s; ���;C) is the set of executions � 2 Exec(s)such that there is some k � 0 with (s; �(i)) 2 R, i = 1; : : : ; k � 1, trace(�(k)) 2��� and �(k) 2 C.Two states s, s0 are called branching bisimulation equivalent (denoted s �brs0) i� (s; s0) 2 R for some branching bisimulation R.It can be shown that �br is a branching bisimulation. In contrast to the non-probabilistic case, branching and weak bisimulation coincide:Theorem4. s � s0 i� s �br s0.Proof. It is easy to see that �br is a weak bisimulation. Hence, �br � �. For theconverse, we show that � is a branching bisimulation where we use the charac-terization of branching bisimulations that we give in the next section (Lemma5). Condition (2) is an easy veri�cation. For condition (1), one �rst shows that,for all C 2 S= � and s 2 S n C,P(s; ��; C) = XA2S=� P 0(s; �; A) � P(A; ��; C)where P(A; �����; C) = P(t; �����; C) for some (all) t 2 A, P 0(s; a; A) =P (s; a; A)=(1 � P (s; �; [s])) if s =2 A or a 6= � and P 0(s; �; [s]) = 0 (Again,[s] denotes the weak bisimulation equivalence class of s.). Thus, the vec-tor (P 0(s; �; A))A2S=� is a solution of the linear equation system x[s] = 0,PA2S=� xA � P(A; ��; C) = P([s]; �; C). The matrix (P(A; ��; C))A;C2S=� canbe shown to be regular. Hence, the above equation system has a unique solu-tion. This yields P 0(s; �; A) = P 0(s0; �; A) for all s, s0 2 S with s � s0. For all� 2 Act, s 2 S and C 2 S= � we have:P(s; �����; C) = XA2S=�P 0([s]; �; A) � P(A; �����; C) + P 0(s; �; C)where P 0([s]; �; A) = P 0(s; �; A). This yields P 0(s; �; C) = P 0(s0; �; C) for all s,s0 2 S with s � s0. 24 Computing weak bisimulation equivalence classesIn this section we develop an algorithm to compute weak (and branching) bisim-ulation equivalence classes. The general idea is to use a partitioning/splitter-technique similar to the ones proposed by Kanellakis & Smolka [25] resp. Paige& Tarjan [30] for deciding strong bisimulation in the nonprobabilistic case. The



algorithm starts with the trivial partition X = fSg and then successively re�nesthe given partition X (with the help of a \splitter" of X), eventually resultingin the set of weak bisimulation equivalence classes.A partition of S is a set X containing pairwise disjoint subsets of S such thateach element s 2 S is contained in some C 2 X . Let [s]X refer to the (unique)element of X with s 2 [s]X . For a partition X , let TX = fs 2 S : P (s; �; [s]X) <1g. TX contains all states that with nonzero probability can perform somethingvisible or silently step into a di�erent class. If s 2 TX then we de�nePX (s; a; C) = P (s; a; C)1� P (s; �; [s]X) :A partition X of S is called a branching bisimulation i� the induced equiv-alence relation RX := SC2X C � C is a branching bisimulation. A possi-ble candidate for a \splitter" of a partition X is a pair (�;C) (or a pair(�; C)) that violates the condition for X to be a branching bisimulation, i.e.PRX (s; ���;C) 6= PRX (s0; ���;C) (PRX (s; ��; C) 6= PRX (s0; ��; C), respec-tively) for someB 2 X and s, s0 2 B. The following characterization of branchingbisimulations yields a simpler condition for splitters as it does not require thecomputation of the probabilities PRX .Lemma5. A partition X is a branching bisimulation i� the following conditions(1) are (2) are satis�ed:(1) For all A 2 X, s; s0 2 A\TX : PX(s; �; C) = PX(s0; �; C) for all C 2 XnfAg,and PX(s; �; C) = PX(s0; �; C) for all C 2 X, � 2 Act n f�g.(2) For all A 2 X either A\TX = ; or for each s0 2 AnTX there is an executionfragment s0 �! : : : �! sk with s0; : : : ; sk�1 2 A n TX , sk 2 A \ TX .Moreover, if X is a branching bisimulation then PRX (s; ���;C) = PX (A; �; C)for all A;C 2 X, s 2 A. Here, PX (A; �; C) denotes PX (t; �; C) for arbitraryt 2 A \ TX unless A \ TX = ;. If A \ TX = ; then PX (A; �; A) = 1 andPX (A; a; C) = 0 if a 6= � or A 6= C.De�nition 6. A splitter of a partition X is a tuple (a; C) consisting of an actiona 2 Act and some C 2 X such that there exists some B 2 X (with B 6= C ifa = �) and PX(s; a; C) 6= PX(s0; a; C) for some states s, s0 2 B \ TX .The main idea for re�ning a given partition X via a splitter (a; C) is to isolatein each B 2 X (with B 6= C if a = �) those states s, s0 2 B \ TX wherePX (s; a; C) = PX (s0; a; C). By condition (2), each such equivalence class A ofB \ TX has to be enriched with exactly those states s 2 B n TX that can reachA via internal actions and that cannot reach any other equivalence class A0 ofB \ TX without passing A.De�nition 7. For (a; C) to be a splitter of a partition X and B 2 X (withB 6= C if a = �), we de�ne Split(B; a; C) = (B \ TX)= � where s � s0 i�PX (s; a; C) = PX (s0; a; C). If A 2 Split(B; a; C) then we de�ne the closure A



of A in X with respect to (a; C) to be the largest set V � B which contains Aand such that for all s 2 V n A: P (s; �; V ) = 1 and there exists an executionfragment s = s0 �! : : : �! sk with s0; : : : ; sk�1 2 V and sk 2 A. We de�neRefine(B; �;B) = fBg and, if a 6= � or B 6= C,Refine(B; a; C) = fA : A 2 Split(B; a; C)g [ Res(B; a; C);Refine(X; a; C) = SB2X Refine(B; a; C);where Res(B; a; C) = fB nSA2Split(B;a;C)Ag n f;g.It is easy to see that for each partition X which is coarser than S= �br and eachsplitter (a; C) of X , the partition Refine(X; a; C) is coarser than S= �br andstrictly �ner than X . If there is no splitter for X and X is coarser than S= �brthen X = S= �br= S= �.Algorithm for computing the weak bisimulation equivalence classesInput: fully probabilistic transition system (S;Act; P )Output: S= �Method: X := fSg;While X contains a splitter (a; C) do X := Refine(X; a; C);Return X.Example 4. Partitioning the transition system from Example 1 proceeds as fol-lows. For the initial partition fSg, we consider the set TfSg = fs2; s3; s4g.(�; S) and (�; S) are splitters, since, for example, PfSg(s2; �; S) = 0:1 6=0:2 = PfSg(s3; �; S). Split(S; �; S) re�nes S \ TfSg into fs2g and fs3; s4g.The closure in fSg yields fs2g = fs2g and fs3; s4g = fs1; s3; s4g, whichleads to Res(S; �; S) = ffs0; s5; s6; s7gg. We have Refine(fSg; �; S) =ffs0; s5; s6; s7g; fs1; s3; s4g; fs2gg. This new partition X contains a splitter(�; fs2g), because PX (s0; �; fs2g) = 0:5 6= 0 = PX(s5; �; fs2g). The sub-sequent re�nement step merely seperates s0 from its former partition, i.e.Refine(X;�; fs2g) = ffs0g; fs5; s6; s7g; fs1; s3; s4g; fs2gg. This partition doesnot contain further splitters, it thus represents the weak bisimulation equiva-lence classes.In what follows, n = jSj. We suppose that the alphabet Act is �xed.Theorem8. The algorithm above can be implemented in time O(n3) and spaceO(n2).Proof. In order to avoid multiple computations of the values P (s; a; C) where Cis a block in X that has not been changed in the last re�nement step we replacethe assignment X := Refine(X; a; C) by Y := Refine(X; a; C); Xnew := Y nX ;



X := Y . (I.e. Xnew contains the set of blocks that have been modi�ed in thelast iteration step. Initially, Xnew = fSg.) Initially, Xnew = fSg.Initialization of the re�ne step: Let X be the current partition. We computethe values P (s; a; C) and PX(s; a; C) for each s 2 S, a 2 Act, C 2 Xnew. Theset TX can be derived from the probabilities P (s; �; C), s 2 C. For each pair(a; C) (where a 2 Act, C 2 Xnew) and A 2 X we compute min(A; a; C) =mins2A PX(s; a; C) and max(A; a; C) = maxs2A PX (s; a; C). Then, (a; C) is asplitter of X i� min(A; a; C) < max(A; a; C) for some A with a 6= � if A = C.If there is no splitter of X then X = S= �. Otherwise we choose some splitter(a; C) of X .Re�nement step: For all B 2 X with B 6= C if a = � we compute the setRefine(B; a; C) as follows. We construct an ordered binary tree Tree(B) bysuccessively inserting the values PX (s; a; C), s 2 B\TX . Each node v of Tree(B)is represented as a record with components v:key and v:states. v:key is the keyvalue of v (i. e. one of the values PX (s; a; C), s 2 B\TX) such that v:key < w:key(v:key > w:key) for all nodes w in the right (left) subtree of v. For each states 2 B \ TX we traverse the tree Tree(B) starting in the root and search forthe value PX (s; a; C). If we reach a node v with v:key = PX (s; a; C) then weinsert s into v:states. Otherwise, PX(s; a; C) is not yet represented in Tree(B)and we insert a node v with v:key = PX(s; a; C) and v:states = fsg. In the�nal tree, v:states is the set of states s 2 B \ TX with PX(s; a; C) = v:key.Thus, the nodes of the �nal tree Tree(B) represent the sets A 2 Split(B; a; C).More precisely, Split(B; a; C) consists of the sets v:states where v ranges over allnodes of Tree(B). We derive Refine(B; a; C) as follows. Let GB be the directedgraph (B;EB) where (s; t) 2 EB i� P (t; �; s) > 0 and t 2 B n TX . We computethe sets A, A 2 Split(B; a; C), by a breadth �rst search like method: We de�nelabel(s) = A for all s 2 A and A 2 Split(B; a; C) and label(s) = ? (\unde�ned"or \not yet visited") for all s 2 B nTX . In what follows, we use label � for statesthat are reachable in GB from two or more sets A 2 Split(B; a; C). Thus, allsuccessors of a �-labelled state in GB are also labelled by �. We use a queue Qwhich initially contains the states s 2 A, A 2 Split(B; a; C). While Q is notempty we take the �rst element s of Q, remove s from Q and, if label(s) 6= �then for all t 2 B n TX with (s; t) 2 EB we do:(1) If label(t) = ? then we add t to Q and set label(t) = label(s).(2) If label(t) 2 Split(B; a; C), label(t) 6= label(s), then we set label(u) = � foru = t and all successors u of t in GB .(In step (2), we use a depth �rst search starting in t to �nd all successors of t.States that are already labelled by � are ignored.) Then, A = fs 2 B : label(s) =Ag and Res(B; a; C) = ffs 2 B : label(s) 2 f?; �ggg n f;g.Complexity: It is clear that the method described above can be implemented inspace O(n2). We show that the time complexity of our method is O(n3). First,we observe that there are at most n iterations of the re�nement step. Thus itsu�ces to show that each re�nement step takes time O(n2): It is clear thatfor each re�nement step, the initialization requires O(n2) time. (For each tuple(s; a; C), one has to calculate the sum Pt2C P (s; a; t). Hence, for �xed a and



ranging over all s 2 S and C 2 X we get the time complexity O(n2). Since wesuppose Act to be �xed, the values P (s; a; C) can be computed in time O(n2).)Ranging over all B, the construction of the trees Tree(B) (thus, the computationof the sets Split(B;A;C)) takesO(n�logn) time if one uses some kind of balancedtrees, e.g. AVL-trees [1]. We show that, ranging over all B 2 X , the sets A andRes(B; a; C) can be derived in time O(n2): For �xed B 2 X , the directed graphGB can be constructed in time O(jBj2). Each state s 2 B is added to Q atmost once. (Note that only states with label ? can be added to Q.) Each state twhich is visited during a depth �rst search in step (2) is labelled by �. Thus, itcan never be visited in step (2) once again. As a consequence, each state causestime costs (at most) of order 2n in the computation of Refine(B; a; C): as anelement of Q and as a state with label 6= � that is visited in step (2). Either caseinvolves O(n) computations. Summing up over all s 2 B, the computation ofRefine(B; a; C) has time complexity O(jBj � n). So, we obtain Refine(X; a; C)in time O(n2). Thus, we get the overall time complexity O(n3). 25 Further directionsIn this paper we have extended the notions of weak and branching bisimulationequivalence to fully probabilistic transition systems. In contrast to the non-probabilistic case, both relations coincide. We have described an algorithm thatcomputes weak (and branching) bisimulation equivalence classes in time O(n3)and space O(n2).Obviously, our notion of equivalence is coarser than strong bisimulationequivalence [26]. In addition, it can be shown that weak bisimulation equiva-lence is �ner than the testing equivalences of [7, 8]. It is also �ner than thetesting equivalence of [9, 36] that considers � -free tests only but incomparablewith their test equivalence that allows for general tests.The de�nition of composition operators for fully probabilistic transition sys-tems is an important subject for further work. In the presence of compositionoperators, a proper notion of equality should be preserved; that is, it is requiredthat weak bisimulation equivalence is a congruence with respect to the oper-ators. Indeed, pre�xing, hiding, restriction and (guarded) probabilistic choicecan be easily adopted from the nonprobabilistic to the fully probabilistic settingsuch that weak bisimulation is a congruence for them, see [4]. Unfortunately it isnot straightforward to adapt parallel composition to this framework. Other fullyprobabilistic calculi like PCCS [12] and similar calculi [18, 27], are based on syn-chronous CCS [28]. In particular, their parallel composition is synchronous. Inthe essence, activities (of di�erent components) that may happen with nonzeroprobability occur synchronously, with a probability given by the product of theindividual probabilities. Such synchrony includes internal activities, because theydo not play a distinguished role in PCCS. This reects the lack of a notion ofequivalence that abstracts from internal computation. In our framework, it seemspromising to allow internal computation to occur asynchronously, similar to the
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