
CONTROLLERSYNTHESIS FORPROBABILISTIC
SYSTEMS (EXTENDED ABSTRACT)

Christel Baier1∗, Marcus Größer1∗∗, Martin Leucker2∗∗∗,
Benedikt Bollig3, Frank Ciesinski1∗

1Institut für Informatik I, University of Bonn, [baier|groesser|ciesinsk]@cs.uni-bonn.de
2IT Department, Uppsala University, leucker@it.uu.se
3Lehrstuhl für Informatik II, RWTH Aachen, bollig@cs.rwth-aachen.de
∗Supported by the DFG-NWO-Project “VOSS”.
∗∗Supported by the DFG-Project “VERIAM” and the DFG-NWO-Project “VOSS”.
∗∗∗Supported by the European Research Training Network “Games”.

Abstract Controller synthesis addresses the question of how to limit the internal behavior
of a given implementation to meet its specification, regardless of the behavior
enforced by the environment. In this paper, we consider a model with probabil-
ism and nondeterminism where the nondeterministic choices in some states are
assumed to be controllable, while the others are under the control of an unpre-
dictable environment. We first consider probabilistic computation tree logic as
specification formalism, discuss the role of strategy-types for the controller and
show the NP-hardness of the controller synthesis problem. The second part of
the paper presents a controller synthesis algorithm for automata-specifications
which relies on a reduction to the synthesis problem for PCTL with fairness.

1. Introduction

In system design, the general goal is to develop systems that satisfy user re-
quirement specifications. To simplify this development process, it should be
automated as far as possible. One goal is to synthesize a system based on the
requirements. Another, practically important task is to synthesize only a con-
troller that limits or controls the behavior of an existing system, usually called
plant, to meet the given specification.
In such a framework, the plant acts usually in an environment. The goal is to
find a schedule for the controllable events that guarantees the specification to
be satisfied considering all possible environmental behaviors. One can also un-
derstand the controller and environment as two players. The plant constitutes
to the game board and controller synthesis becomes the problem of finding
a strategy for the controller that satisfies the specification whatever move the
environment does, or in other words, under any adversary.

The requirement specification can either be given internally or externally. In-
ternal specifications impose restrictions for example on the number of visits
of a state of the plant. Examples for external specifications are temporal logic
formulas that are supposed to be satisfied by the controlled plant.
The controller synthesis problem has attracted a lot of attention in recent years.
For discrete systems, the problem is meanwhile well understood [Thomas,
2003]. Recently, the problem was studied for timed systems [Bouyer et al.,
2003; de Alfaro et al., 2003]. Here, the plant is modeled as a timed transition
system and requirement specifications are given in timed temporal logic or as
ω-regular winning conditions on the system.
We study the problem in a probabilistic setting. Our underlying model for the
plant are Markov Decision Processes (MDPs), in which we, however, distin-
guish states that are under control of the plant from those that are under the
control of the environment. This model is also known as turn-based stochastic
21

2 -player games [Condon, 1992; Condon, 1993; Filar and Vrieze, 1997; de Al-
faro et al., 1998; de Alfaro and Henzinger, 2000; Chatterjee et al., 2003], and
it is a popular model in planning, AI, and control problems. Several solutions
have been suggested for ω-regular winning objectives (e.g. reachability, Büchi
and coBüchi, Rabin chain, parity condition) with qualitative winning criteria
(sure, almost sure, limit sure) in the turn-based and concurrent case [Condon,
1993; de Alfaro et al., 1998; de Alfaro and Henzinger, 2000; Jurdzinski et al.,
2003; Chatterjee et al., 2003]. We are interested here in quantitative winning
criteria stating that the probability to win the game meets a given lower (or
upper) probability bound as studied in [de Alfaro and Majumdar, 2001] for
concurrent games and in the recent paper [Chatterjee et al., 2004] for 112 - and
21

2 -player stochastic games.
Translating the players to system and environment, one can construct a lot of
examples of similar spirit, for example in domain of security analysis. The
environment acts as an intruder and random moves are used to model different
nuances [Mitchell, 2001].
In our setting, we study the problem to find a strategy for the plant such that
a given external specification formalized as a probabilistic temporal logic for-
mula is fulfilled, no matter how the opponent (environment) behaves. In the
first part of the paper, we consider the synthesis problem where the specifi-
cation is provided by means of a formula of probabilistic computation tree
logic PCTL [Hansson and Jonsson, 1994; Bianco and De Alfaro, 1995]. As
for strategies, we discuss several choices: The system or the opponent has to
choose deterministically (D) or can choose randomly (R). Furthermore, he or
she might choose according to the current state (M), also called stationary or
Markovian, or, is allowed to look at the history of the game played so far (H).
From a practical point of view, it would be desirable to be able to synthesize
controllers that do not require extra memory to keep track of a history and

do not depend on random number generators. However, we show that this is
not always possible. For security analysis, this implies that adversaries that
act according to the information obtained so far are stronger than those not
using this information. For the synthesis algorithms, it means that any of the
strategy-classes HD, HR, MD and MR requires its own synthesis algorithm.
We then show the NP-completeness of the synthesis problem for PCTL and
MD-strategies and the NP-hardness of the synthesis problem for PCTL and
the strategy-classes HD, HR and MR. Moreover, we show that these results
already hold in the setting of 11

2 -player games (where all states are assumed to
be controllable) and for the sublogics PCTL\© and PCTL\U that do not use
the next step and until operator, respectively. This result stands in contrast to
the PCTL model checking problem which is solvable in polynomial-time and
for which the strategy-class is irrelevant [Bianco and De Alfaro, 1995].
The second part of the paper addresses the synthesis problem for linear time
specifications formalized by LTL-formulas. We show that an optimal HD-
strategy for M and LTL-formula ϕ can be derived from an optimal MD-
strategy for the product-MDP M × A, built from the original MDP M and
a deterministic Rabin automaton A for ϕ, that maximizes the probability to
reach a so-called winning component under certain fairness assumptions for the
adversary. We thus obtain a triple-exponential solution for the HD-controller
synthesis problem for MDPs and LTL-specifications that relies on a reduction
to the HD-controller synthesis problem for MDPs and Rabin automaton spec-
ifications. The latter is solvable via a reduction to the MD-synthesis problem
for PCTL with fairness [Baier and Kwiatkowska, 1998]. The recent paper [
Chatterjee et al., 2004] establishes the same complexity result for quantitative
stochastic 21

2 -player parity games. In fact, the latter is equivalent to the HD-
controller synthesis problem for MDPs and Rabin automaton specifications be-
cause both the parity and Rabin-chain condition have the expressiveness of ω-
regular winning conditions [Thomas, 1990; Emerson and Jutla, 1991; de Alfaro
and Henzinger, 2000]. Thus, our algorithm, which relies on applying a model
checker for PCTL with fairness to the MDPs induced by the MD-strategies,
can be seen as an alternative to the algorithm suggested in [Chatterjee et al.,
2004], which applies an algorithm to solve the quantitative 112 -player parity
game to the MDPs induced by the MD-strategies. For a full version of this
paper see http://web.informatik.uni-bonn.de/I/baier/publikationen.html.

2. Preliminaries

A distribution on a countable set X denotes a function µ : X → [0, 1] with∑
x∈X µ(x) = 1. Distr(X) denotes the set of all distributions on X. A MDP

is a tuple M = (S,Act,P, sinit,AP, L) where S is a countable set of states,
Act a finite set of actions, P : S × Act × S → [0, 1] is a three-dimensional

transition probability matrix such that
∑

t∈S P(s, α, t) ∈ {0, 1} for all states
s ∈ S and actions α ∈ Act, and sinit ∈ S is the initial state. AP denotes
a finite set of atomic propositions, and L : S → 2AP a labelling function
which assigns to each state s ∈ S the set L(s) of atomic propositions that are
(assumed to be) valid in s. For technical reasons, we require that none of the
states is terminal, i.e., for each state s there exists an action α and a state s′
with P(s, α, s′) > 0. M is called finite if the state space S is finite. If T ⊆ S,
then P(s, α, T) =

∑
t∈T P(s, α, t) denotes the probability for s to move to a

T -state, provided that action α has been selected in state s. We write ActM(s)
or briefly Act(s) for the action-set

{
α ∈ Act | P(s, α, S) = 1

}
.

A path in M is a finite or infinite alternating sequence of states and actions
σ = s1, α1, . . . , αn−1, sn or ς = s1, α1, s2, α2, . . . such that P(si, αi, si+1) >
0. σ[i] denotes the i-th state of σ, first(σ) = σ[0], and pref(σ, i) denotes the
i-th prefix of σ (ending in σ[i]). For finite paths, last(σ) denotes the last state
of σ, while length(σ) stands for the number of transitions in σ. For infinite
paths, trace(ς) denotes the infinite word over the alphabet 2AP which arises
from ς by the projection of the induced state-sequence to the sequence of the
labelings. If ς is as above then trace(ς) = L(s1), L(s2), L(s3), . . . ∈ (2AP)ω.
Lim(ς) denotes the pair (T,A) where T is the set of states that occur infinitely
often in ς and where A : T → Act assigns to state s ∈ T the set of actions
α ∈ Act(s) with s = si and α = αi for infinitely many indices i. PathM(s)
(briefly Path(s)) stands for the set of infinite paths inM which start in state s.
In the sequel, we assume thatM is a finite MDP and S0 a nonempty subset of
S consisting of the states which are under the control of the system, i.e., where
the system may decide which of the possible actions is executed. The states in
S \S0 are controlled by the environment. By a strategy for (M, S0), we mean
any instance D that resolves the nondeterminism in the S0-states. We distin-
guish four types of strategies for (M, S0), where M stands for Markovian, H
for history-dependent, D for deterministic and R for randomized.
• A MD-strategy is a function D : S0 → Act such that D(s) ∈ Act(s).
•AMR-strategy is a functionD : S0 → Distr(Act)withD(s) ∈ Distr(Act(s))
• A HD-strategy is a function D that assigns to any finite path σ in M with
last(σ) = s ∈ S0 an action D(σ) ∈ Act(s).
•AHR-strategy is a functionD that assigns to any finite path σ with last(σ) =
s ∈ S0 a distribution D(σ) ∈ Distr(Act(s)).
MD-strategies are often called simple or purely memoryless. AD-path denotes
a path that can be generated by D. E.g., if D is a HD-strategy and σ as above
then σ is a D-path iff for all indices i ∈ {1, . . . , n − 1} where si ∈ S0 the
chosen action αi in σ agrees with D(pref(σ, i)). We refer to the strategies for
the environment as adversaries. Formally, for X ∈ {MD,MR,HD,HR}, a
X-adversary for (M, S0) denotes a X-strategy for (M, S \ S0). The notion
of policy will be used to denote a decision rule that resolves both the internal

nondeterministic choices and the nondeterministic choices to be resolved by
the environment. Thus, by a X-policy forMwemean a X-strategy for (M, S).
We will use the letter D for strategies, E for adversaries and C for policies.
Policies will often be written in the form C = (D,E).
It is clear that the four strategy-types form a hierarchy. Each simple strategy
can be viewed as a MR-strategy (which chooses for any state s ∈ S0 a fixed
action α ∈ Act(s) with probability 1) and as a HD-strategy (which only looks
for the last state of a path). Similarly, any HD-strategy can be viewed as a HR-
strategy. Hence, the class of HR-strategies subsumes the other three strategy-
classes MD, HD and MR.
The MDP induced by a strategy. Any strategy D for (M, S0) induces a MDP
MD which arises through unfolding M into a tree-like structure where the
nondeterministic choices in the S0-states are resolved according to D. E.g., if
D is a HD-strategy for (M, S0) then the states inMD are the finite D-paths.
The initial state of MD is sinit, viewed as a path of length 0. If σ is a finite
D-path and last(σ) ∈ S0 then ActMD

(σ) = {D(σ)} and PD(σ,D(σ), σ′) =
P(last(σ),D(σ), s) if σ′ = σ, α, s where α = D(σ), and PD(σ, α, σ′) = 0
in all other cases. If last(σ) /∈ S0 then ActMD

(σ) = ActM(last(σ)) and
PD(σ, α, 〈σ, α, s〉) = P(last(σ), α, s) for all α ∈ Act and s ∈ S. The MDP
MD for HR-strategies is defined in the same way except that PD(σ, α, 〈σ, α, s〉)
= D(σ)(α) · P(last(σ), α, s) if last(σ) ∈ S0.
Markov chains and probability measure for policies. If S0 = S and D =
C is a policy for M then all nondeterministic choices are resolved in MC .
Hence, for any HR-policy C , the MDP MC is an infinite-state discrete-time
Markov chain. If C is a stationary Markovian policy then all finite C-paths σ,
σ′ (viewed as states ofMC) with last(σ) = last(σ′) can be identified. Hence,
MC can be viewed as a (discrete-time) Markov chain with state space S. If C
is a policy forM, then we write PrCM or briefly PrC to denote the (standard)
probability measure onMC .

Probabilistic Computation Tree Logic (PCTL). PCTL (and its extension
PCTL∗) [Hansson and Jonsson, 1994; Bianco and De Alfaro, 1995] is a bran-
ching-time temporal logic à la CTL/CTL∗ where state-formulas are interpreted
over states of a MDP and path-formulas over its paths. It incorporates an oper-
ator to refer to the probability of the occurrence of particular paths (rather than
quantification over paths as in CTL). In the sequel, we assume a fixed set AP of
atomic propositions and use the letter a to denote an atomic proposition (i.e.,
a ∈ AP). The letter p stands for a probability bound (i.e., p ∈ [0, 1]). The sym-
bol �� is one of the comparison operators � or �. The syntax of PCTL∗-state
formulas (denoted by Φ, Ψ) and path formulas (denoted by ϕ) is as follows:

Φ ::= tt | a | Φ ∧ Φ | ¬Φ | P��p(ϕ)
ϕ ::= Φ | ϕ ∧ ϕ | ¬ϕ | © ϕ

∣∣ ϕU ϕ

Intuitively, P��p(ϕ) asserts that the probability measure of the paths satisfying
ϕ meets the bound given by �� p. The path modalities © (next step) and U
(Until) have the same meaning as in CTL∗. Other boolean connectives (e.g. ∨)
and the temporal operators ♦ (eventually) and � (always) can be derived as in
CTL∗ by ♦ϕ = ttU ϕ and �ϕ = ¬♦¬ϕ. PCTL denotes the sublogic where
only path formulas of the form ©Φ and ΦU Ψ are allowed. The always-
operator can be derived in PCTL using the duality of lower and upper proba-
bility bounds, e.g. P�p(�Φ) = P�1−p(♦¬Φ). PCTL\© (PCTL\U) denotes
the fragment of PCTL that does not use the next step (until) operator. LTL
(linear time logic) denotes the path-formula fragment of PCTL∗ where atoms
are atomic propositions (rather than arbitrary state formulas).
Given a MDP M as before, the formal definition of the satisfaction relation
|= for PCTL∗-path formulas and propositional PCTL∗-state formulas is ex-
actly as for CTL∗ and omitted here. For the probabilistic operator, the seman-
tics is defined bys |= P��p(ϕ) iff for all policies C : PrC(s, ϕ) �� p where
PrC(s, ϕ) = PrC{ ς ∈ Path(s) | ς |= ϕ }. We shall use PrC(ϕ) as an ab-
breviation for PrC(sinit, ϕ). To distinguish the satisfaction relation for different
MDPs, we sometimes write (M, s) |= Φ instead of s |= Φ. We writeM |= Φ
iff Φ holds in the initial state ofM.
The satisfaction relation for PCTL does not depend on the chosen policy-type
because maximal and minimal probabilities for PCTL-path formulas under all
HR-policies are reached with simple policies [Bianco and De Alfaro, 1995].

Rabin automata. A deterministic Rabin automaton is a structure A =(
Q,Π, δ, q0,Acc

)
where Q is a finite state space, Π the alphabet, q0 ∈ Q

the starting state, and δ : Q × Π → Q the transition function. (To encode
an LTL-formula by a Rabin automaton the alphabet Π = 2AP is used.) The
acceptance condition Acc is a set of tuples (Hi,Ki) consisting of subsets Hi

andKi ofQ. The run for an infinite word π = π[0], π[1], . . . ∈ Πω inAmeans
the infinite sequence q0, q1, q2, . . . of automata-states where qi+1 = δ(qi, π[i]).
Acceptance of π under the Rabin condition Acc = {(Hi,Ki) : i = 1, . . . ,m}
can be described by the LTL-formula acc(A) =

∨
1≤i≤m ♦�(Hi ∧ ♦Ki).

That is, a run ρ = q0, q1, q2, . . . in A is accepting if there is at least one
pair (Hi,Ki) in the acceptance condition Acc of A such that lim(ρ) ⊆ Hi

and lim(ρ) ∩ Ki
= ∅ where lim(ρ) denotes the set of all states in Q which
appear infinitely often in ρ. L(A) denotes the accepted language of A, i.e.,
the set of infinite words ρ ∈ Πω whose run in A is accepting. Given a
MDP M = (S,Act,P, sinit,AP, L), policy C for M and Rabin automaton
A = (Q, 2AP, δ,Q0,Acc), we write PrC(s,A) for the probability measure of
all C-paths that start in state s and that generate a trace which is accepted by
A, i.e., we put PrC(s,A) = PrC{ς ∈ Path(s) : trace(ς) ∈ L(A)}. PrC(A)
stands short for PrC(sinit,A).

s0

{a} {b}

α, 1 β, 1

1 1

Fig. 1(a) randomization helps

s0

{a} u {b}vα, 1

β, 1
τ, 1

1

Fig. 1(b) history helps

3. The controller synthesis problem for PCTL

The controller synthesis problems discussed in this paper are formalized by
triples (M, S0,Spec) whereM is a finite MDP, S0 a set of controllable states
inM and Spec a temporal-logical or ω-regular specification. The question is
to find a strategy D for (M, S0) such that Spec holds for the MDPMD, no
matter how the environment (adversary) behaves.
This section addresses the case where Spec is a PCTL-state formula and first
discusses the role of the strategy-type. Let X ∈ {MD,MR,HD,HR} be a
strategy class. The X-controller synthesis problem for PCTL is as follows:
Given: a finite MDPM, a subset S0 of states and a PCTL-state formula Φ.
Wanted: a X-strategy D for (M, S0) such thatMD |= Φ (if one exists).
Clearly, any solution of the MD-strategy controller synthesis problem (i.e.,
any simple strategy D with MD |= Φ) is at the same time a solution for
the controller synthesis problem for any other strategy-class which subsumes
the simple strategies (in particular, for the strategy-classes MR, HD and HR).
With the same argument, if the HD- or MR-controller synthesis problem is
solvable then so is the HR-controller synthesis problem.
The question arises whether (as for the PCTL satisfaction relation) e.g. simple
strategies are as powerful as HD-strategies to solve the controller synthesis
problem and the same question for other strategy-classes X1 (instead of MD)
and X2 (instead of HD) with X2
⊆ X1. The answer is no in either case (more
precisely, for the strategy-classes MD, MR, HD and HR discussed here), even
for the sublogics PCTL\© and PCTL\U .
For the MDP M in Fig. 1(a) with s0 ∈ S0 and the PCTL\U -formula Φ =
P�0.5(©a) ∧ P�0.5(©b) the HD-controller synthesis problem is not solvable
forM, S0 and Φ. On the other hand, (MD, s0) |= Φ for the MR-strategy D
which assigns probability 1/2 to actions α and β in state s0. Hence, the MR-
controller synthesis problem is solvable forM, S0 and Φ. The same argument
applies to the PCTL\©-formula P�0.5(♦a) ∧ P�0.5(♦b). Thus, randomized
strategies (MR, HR) can be more powerful than deterministic (MD, HD) strate-
gies to solve the controller synthesis problem for PCTL\U or PCTL\©.
The following shows that there are instances (M, S0,Φ) for which the con-
troller synthesis problem for the strategy-class HD is solvable but not for the
MR-strategies. For the MDP shown in Figure 1(b), with s0 ∈ S0, and Φ =

P�1(©a) ∧ P�1(©Ψ), with Ψ = P�1(©P�1(©b)) there is a HD-strategy
D with (MD, s0) |= Φ. On the other hand, the only MR-strategy D which
guarantees for s0 that with probability 1 the next state is an a-state is given
by D(s0)(α) = 1, and D(sinit)(β) = 0. For this MR-strategy D, we have
(MD, s0)
|= P�1(©Ψ), and hence, (MD, s0)
|= Φ. The same argument ap-
plies to the PCTL\©-formula P�1(♦a) ∧ P�1(♦b) where the only chance for
a MR-strategy to reach the a-state u with probability 1 is to select action α in
state s0 with probability 1.
The previous remarks show that the role of strategy-types for controller synthe-
sis is completely different from the situation in PCTL model checking. While
a single algorithm suffices for PCTL model checking, for controller synthesis,
any strategy type requires its own synthesis algorithm!
The naïve idea to solve the MD-controller synthesis problem for M, S0 and
PCTL-formula Φ is to consider all simple strategies D for (M, S0) and to
apply a standard PCTL model checking algorithm to MD and Φ. The time
complexity is linear in the length of Φ and exponential in size(M), but we
should not expect an algorithm which is efficient for all MDPs because of the
following theorem which shows that the decision variant of the controller syn-
thesis problem is NP-complete. The decision variant asks for the existence of
a simple strategy D such thatMD |= Φ but not for such a strategy. To prove
membership in NP we need the existence of a polynomial-time algorithm that
calculates the precise maximal or minimal probabilities for PCTL-path formu-
las under simple policies (rather than approximation algorithms). For instance,
this is possible if all probabilities in the given MDP M and all probability
bounds in the given PCTL formula Φ are rational. In this case, we may apply
the PCTL model checking procedure à la Bianco and de Alfaro [Bianco and
De Alfaro, 1995] using precise methods to solve linear programs.

Theorem 1 Under the above conditions, the decision variant of the MD-
controller synthesis problem for PCTL and its sublogics PCTL\U and PCTL\©
is NP-complete, even when we require all states in the MDP to be controllable.

Theorem 2 The decision variant of the MR/HD/HR-controller synthesis for
PCTL and its sublogics PCTL\© and PCTL\U is NP-hard, even when all states
are required to be controllable.

PCTL with fairness. In Section 4, we shall need a variant of the controller
synthesis problem for PCTL where fairness assumptions about the adversaries
are made. The X-controller synthesis problem for PCTLwith fairness assumes
a finite MDPM = (S,Act,P, sinit,AP, L), a subset S0 of S, a PCTL-formula
Φ and, in addition, a fairness condition for the adversaries. It asks for a X-
strategy D such that MD |=fair Φ where the satisfaction relation |=fair is
defined as the standard satisfaction relation |=, except for the probabilistic op-

erator: s |=fair P��p(ϕ) iff for all fair policies C: PrC(s, ϕ) �� p. Several
fairness notions for MDPs have been suggested [Vardi, 1985; Pnueli and Zuck,
1986; Baier and Kwiatkowska, 1998]. In Section 4 we shall use the notion of
a fair adversary (for a given strategy D) to denote an adversary F such that
almost all (D,F)-paths are fair.
The NP-completeness established in Theorem 1 for PCTLwithout fairness car-
ries over to PCTLwith fairness. To solve the MD-controller synthesis problem
for PCTL with fairness conditions, we may apply the model checking algo-
rithm suggested in [Baier and Kwiatkowska, 1998] to each MDPMD induced
by a simple strategy D. For other strategy types (MR, HD or HR), the com-
plexity or even the decidability of the controller synthesis problem for PCTL
(without or with fairness) is an open problem.

4. HD-controller synthesis for automata-specifications

We now address the controller synthesis problem where the specification is
provided by means of an ω-automaton and a probability bound “�� p”. Using
an automata-representation for a given LTL-formula, the techniques suggested
here also solve the controller synthesis problem for LTL.
In the rest of this section,M = (S,Act,P, sinit,AP, L) is a finite MDP, S0 ⊆ S,
and A = (Q, 2AP, δ, q0,Acc) a deterministic Rabin automaton as in Sect. 2.
The X-controller synthesis problem for M, S0, A, “�� p” asks whether there
is a X-strategy D such that Pr(D,E)(A) �� p for all HD-adversaries E.
To see the difference between the controller synthesis problems for the strategy-
classes HD and MD resp. MR, consider the following. Let M be as in fig-
ure 1(b), s0 ∈ S0 and ϕ = (♦a ∧ ♦b) and ϕ′ = (©a ∧©©©b) be LTL\©
and LTL\U formulas respectively. The controller synthesis problem for M,
S0, ϕ (resp. ϕ′) and probability bound “� 1” is solvable for HD, but not for
MD or MR strategies. The controller synthesis problem for M, S0, ϕ (resp.
ϕ′) and probability bound “� p” is solvable for MR, but not for MD strategies
for 0 < p < 1 (resp. 0 < p � 1

4). So any of the strategy types MD, MR, HD
requires its own synthesis algorithm.
On the other hand, the two history-dependent strategy types HD and HR are
equivalent for the controller synthesis problem for automata-specifications as
HR-strategies can be viewed as convex combinations of (possibly infinitely
many) HD-strategies, see e.g. [Derman, 1970; Puterman, 1994].
In the following, we present a solution for the HD-controller synthesis problem
for M, S0, A and lower probability bounds “� p”. Thus, our goal is the
construction of a HD-strategy D such that Pr(D,E)(sinit,A) � p for all HD-
adversaries E. Upper probability bounds can be treated in a similar way.

Definition 3 (Product-MDP [de Alfaro, 1997]) TheMDPM×A
= (S × Q,Act, P, tinit, AP′, L′) is defined as follows: The initial state tinit is

〈sinit, qinit〉 where qinit = δ(q0, L(sinit)). The values of the transition probability
matrix are given by P(〈s, q〉, α, 〈s′, δ(q, L(s′)〉) = P(s, α, s′) and P(·) = 0
in all other cases. The set AP′ is AP ∪ (S × Q) ∪ Q where AP, S × Q and
Q are supposed to be pairwise disjoint. The labeling function L′ is given by
L′(〈s, q〉) = L(s) ∪ {〈s, q〉, q}. The “liftings” of the sets Hi,Ki ⊆ Q in the
acceptance condition of A are defined by H̄i = S × Hi, and K̄i = S × Ki. If
P ⊆ (S × Q) ∪ Q then we write P for the propositional formula

∨
q∈P q.

There is a one-to-one correspondence between the paths in M and M × A.
Given a (finite or infinite) path π inM, we lift π to a path π× in M ×A by
adding automata components which describe the run of π in A. Vice versa,
given a path π inM×A, the projection π|M of π to the state sequence inM
is a path inM while the projection π|A of π to the sequence of automata-states
is the run for π|M in A. This observation yields a one-to-one correspondence
between the HD-strategies for (M, S0) and (M×A, S0×Q) in the following
sense. If D is a strategy for (M, S0) then we may define a strategy D× for
(M × A, S0 × Q) by D×(σ) = D(σ|M). Vice versa, given a strategy D
for (M ×A, S0 × Q), we may define the “corresponding” strategy D|M for
(M, S0) by D|M(σ) = D(σ×). The described transformation D �→ D× is
type-preserving in the sense that if D is a X-strategy for (M, S0) then D× is
a X-strategy for (M × A, S0 × Q), while the converse transformation D �→
D|M may yield a HD-strategy D|M for (M, S0) if D is a simple strategy
for (M × A, S0 × Q). If C is a HD-policy for M and C× the induced HD-
policy in M × A then PrCM(A) = PrC×

M×A(A) = PrC
×

M×A(acc(A)). By the
one-to-one-relation for both the adversaries E and strategies D, we get:

Lemma 4 sup
D

inf
E

Pr(D,E)
M (A) = sup

D
inf
E

Pr(D,E)
M×A(A)

Lemma 4 allows us to focus on the product-MDP. From now on, if not stated
otherwise, by a strategy (an adversary) we mean a strategy (an adversary) for
(M×A, S0 × Q). [de Alfaro, 1997] defines end components of the product-
MDP as the MDP-analogue of recurrent sets in discrete-time Markov chains.
Intuitively, end components are sub-MDPs for which a policy can be defined
such that almost all paths in the end component visit any state of the end com-
ponent infinitely often. Formally, an end component [de Alfaro, 1997] for the
MDPM×A denotes a pair (T,A) consisting of a nonempty subset T of S×Q
and a function A : T → Act such that (i) ∅
= A(t) ⊆ Act(t) for all states
t ∈ T , (ii) P(t, α, T) = 1 for all t ∈ T and α ∈ A(t) and (iii) the induced
digraph (T,−→A) is strongly connected. (Here, t −→A t′ iff P(t, α, t′) > 0
for some α ∈ A(t).) An accepting end component (AEC) is an end component
(T,A) such that T ⊆ H̄i and T ∩ K̄i
= ∅ for some index i ∈ {1, . . . ,m}.

[de Alfaro, 1997] shows that for each policy C , the probability measure for
the infinite paths ς where Lim(ς) is an end component is 1. Hence, we have
PrCM×A(A) = PrC

M×A{ς : Lim(ς) is an AEC}.
For our purposes, we need a variant of accepting end components, called win-
ning components. The idea is that for any state t of a winning component
there is a strategy such that—independent on how the adversary resolves the
nondeterminism—almost all paths starting in t will eventually reach an AEC
and stay there forever.

Definition 5 (Winning component) A winning component denotes a
pair (T,A) consisting of a nonempty subset T of S × Q and a function A :
T → Act such that (1) A(t) ⊆ Act(t) and |A(t)| = 1 for all t ∈ T ∩ (S0×Q),
(2) A(t) = Act(t) for all t ∈ T ∩ ((S \ S0) × Q), (3) P(t, α, T) = 1 for
all t ∈ T and α ∈ A(t) and (4) for any simple adversary E and any bottom
strongly connected component U of the digraph (T,−→E) with t −→E t′ iff
P(t, E(t), t′) > 0 there exists an index i ∈ {1, . . . ,m} such that U ⊆ H̄i and
U ∩ K̄i
= ∅. WC denotes the set of all states t ∈ S × Q that are contained in
some winning component.

Our goal is now to show that the best strategy to generate A-paths can be
derived from the best strategy to reach a winning component.

Lemma 6 For any state t0 ∈ (S × Q) \ WC and HD-strategy D, there exists

a HD-adversary E such that Pr(D,E)
M×A(t0,A) < 1.

We now show that any strategy can be improved by forcing the system to stay
inWC as soon as WC is reached.

Lemma 7 There is a simple strategy DWC such that Pr(DWC,E)
M×A (t,A) = 1 for

all HD-adversaries E and all states t ∈ WC. and for any infinite DWC-path ς ,
if ς[i] ∈ WC then ς[j] ∈ WC for all j � i.

Lemma 6 and 7 yield:

Corollary 8 For any state t ∈ M × A: t ∈ WC iff there exists a HD-
strategy D with Pr(D,E)

M×A(t,A) = 1 for all HD-adversaries E.

Lemma 9 For any HD-strategy D there is a HD-strategy D̂ such that for all
HD-adversaries E:

(1) For any infinite D̂-path ς , if ς[i] ∈ WC then ς[j] ∈ WC for all j � i.

(2) Pr(
bD,E)

M×A(♦WC) = Pr(
bD,E)

M×A(♦WC ∧ acc(A))

(3) Pr(
bD,E)

M×A(A) � Pr(D,E)
M×A(A)

Our rough goal is to show sup
D

inf
E

Pr(D,E)(A) = sup
D

inf
E

Pr(D,E)(♦WC).

t

u

WC
1
2

1
2

Lemma 9 yields “�”. Unfortunately, “�” does not
hold in general. For instance, in the MDP shown
aside, we assume that states t and u build an AEC
which is not contained inWC. If t /∈ S0 then the best
adversary, Ê, chooses the transition that leaves the
AEC {t, u} and moves with probability 1/2 to WC.
On the other hand, under the adversary E that forces
the system to stay forever in the AEC {t, u}, WC is
never reached, and thus, E minimizes the probability for ♦WC. However, any
adversary, which—as in the example aside—forces the system to stay in an
AEC that does not intersect with WC, can be improved by leaving the AEC,
even ifWC is reached under the modified adversary.

Lemma 10 For any HD-strategy D̂ which fulfills condition (1) and (2) of
Lemma 9 and any HD-adversary E there exists a HD-adversary Ê such that

(4) Pr(
bD, bE)

M×A(Γ) = 0 where Γ denotes the set of infinite paths ς that start in
tinit and where Lim(ς) = (T,A) is an AEC with T ∩ WC = ∅.

(5) Pr(
bD,E)

M×A(A) � Pr(
bD, bE)

M×A(A) = Pr(
bD, bE)

M×A(♦WC)

For policies (D̂, Ê) where (1), (2) and (4) hold, the probability to reach WC
agrees with the probability for the A-paths. Thus, using Lemma 7, 9 and 10,
we obtain: supD infE Pr(D,E)

M×A(A) = sup
bD

inf
bE

Pr(D, bE)
M×A(♦WC) where

D, E range over all HD-strategies/HD-adversaries and D̂, Ê over all HD-
strategies/HD-adversaries satisfying (1), (2) and (4). We now show that the
adversaries where (4) holds are exactly the adversaries that are fair in the fol-
lowing sense:

Definition 11 (AEC-Fairness) For any state t ∈ ((S\S0)×Q)∩(AEC\
WC), let FairAct(t) be the set of actions α ∈ Act(t) such that P(t, α, S \
AEC) > 0. Here, AEC denotes the set of all states that are contained in some
AEC. For any other state t ∈ S × Q, we put FairAct(t) = ∅. An infinite path
ς = s1

α1−→ s2
α2−→ . . . is called AEC-fair iff for all t ∈ ((S\S0)×Q)∩(AEC\

WC) where FairAct(t)
= ∅: If t occurs infinitely often in ς then there are
infinitely many indices i with si = t and αi ∈ FairAct(si). An HD-adversary
F is called AEC-fair for strategy D if Pr(D,F)

M×A
{
ς : ς is AEC-fair

}
= 1.

Given a strategy D̂ satisfying (1) and (2), any adversary Ê that fulfills condi-
tion (4) in Lemma 10 is AEC-fair for D̂. Vice versa, (4) holds for any adversary
F that is AEC-fair for D̂. Thus:

inf
E

Pr(
bD,E)

M×A(A) = inf
F fair

Pr(
bD,F)

M×A(A) = inf
F fair

Pr(
bD,F)

M×A(♦WC)

Lemma 12 sup
D

inf
E

Pr(D,E)
M×A(A) = sup

D
inf

F fair
Pr(D,F)

M×A(♦WC)

where D ranges over all HD-strategies, E over all HD-adversaries and F over
all HD-adversaries that are AEC-fair for D. This follows from Lemma 9.

According to Lemma 12, the HD-controller synthesis problem for Rabin-autom-
ata specifications is reducible to the HD-controller synthesis problem for PCTL
with fairness. Although the controller synthesis problem for PCTL depends
on the chosen strategy-type, for probabilistic reachability properties such as
P�p(♦WC) we may switch from HD-strategies to simple strategies.

Lemma 13 sup
D

inf
F fair

Pr(D,F)
M×A(♦WC) = max

eD simple
inf

F fair
Pr(

eD,F)
M×A(♦WC)

whereD ranges over all HD-strategies, D̃ over all simple strategies and F over
all HD-adversaries that are AEC-fair for D resp. D̃. And finally we get

Theorem 14 There is a HD-strategy D for (M, S0) which solves the con-
troller synthesis problem forM, S0, A and probability bound “� p” iff there
is a simple strategy D̃ for the MD-controller synthesis problem for M × A,
S0 × Q, the PCTL-formula P�p(♦WC) and AEC-fairness (Def. 11).

In summary, the HD-controller synthesis problem for automata specifications
and lower probability bounds can be solved by performing the following steps:
(i) Built the product-MDPM×A, (ii) calculateWC, (iii) check whether there
is a simple strategy D̃ for (M × A, S0 × Q) such that (M × A)

eD
|=fair

P�p(♦WC) and (iv) if no such simple strategy D̃ exists then return “No.” Oth-
erwise return the HD-scheduler D as in the proof of Theorem 14. In step (ii),
we may make use of Corollary 8 which yields that WC is the set of states
that have a winning strategy for the Rabin-chain winning objective (formal-
ized by the LTL-formula acc(A)) and the almost-sure winning criterion. Re-
formulating acc(A) as a parity winning condition, we may apply the reduction
technique suggested in [Chatterjee et al., 2003] from qualitative stochastic 212 -
player parity games to (non-stochastic) 2-player parity games to calculate WC
with known methods [Emerson et al., 1993; Jurdzinski, 2000; Vöge and Jur-
dzinski, 2000]. In step (iii), the naïve method that applies a model checking
algorithm for PCTLwith fairness [Baier and Kwiatkowska, 1998] to any of the
MDPs (M×A)

eD
, the space complexity is bounded by O(size(M) · size(A)),

but the worst-case running time is exponential in size(M) and size(A). (Note
that the number of simple strategies is

∏
s∈S0

|Act(s)||Q| � 2|S0|·|Q| if |Act(s)|
� 2 for all states s ∈ S0.)

References
Baier, C. and Kwiatkowska, M. (1998). Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11(3):125–155.

Bianco, A. and De Alfaro, L. (1995). Model checking of probabilistic and non-deterministic
systems. In Proc. FST & TCS, LNCS 1026, pages 499–513.

Bouyer, P., D’Souza, D., Madhusudan, P., and Petit, A. (2003). Timed control with partial ob-
servability. In Proc. CAV LNCS 2725, pages 180–192.

Chatterjee, K., Jurdzinski, M., and Henzinger, T. (2003). Simple stochastic parity games. In
Proc. CSL LNCS 2803, pages 100–113.

Chatterjee, K., Jurdzinski, M., and Henzinger, T. (2004). Quantitative simple stochastic parity
games. In Proceedings of the Annual Symposium on Discrete Algorithms (SODA). SIAM.

Condon, A. (1992). The complexity of stochastic games. Inf. and Comp., 96:203–224.
Condon, A. (1993). On algorithms for simple stochastic games. DIMACS, 13:51–71.
de Alfaro, L. (1997). Formal Verification of Probabilistic Systems. PhD thesis, Stanford Univer-
sity. Technical report STAN-CS-TR-98-1601.

de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., and Stoelinga, M. (2003). The element
of surprise in timed games. In Proc. CONCUR, LNCS 2761, pages 144–158.

de Alfaro, L. and Henzinger, T. (2000). Concurrent omega-regular games. In Proc. LICS, pages
141–154. IEEE Computer Society Press.

de Alfaro, L., Henzinger, T., and Kupferman, O. (1998). Concurrent reachability games. In Proc.
FOCS, pages 564–575. IEEE Computer Society Press.

de Alfaro, L. and Majumdar, R. (2001). Quantitative solution of omega-regular games. In Proc.
STOC’01, pages 675–683. ACM Press.

Derman, C. (1970). Finite-State Markovian Decision Processes. Academic Press.
Emerson, E. and Jutla, C. (1991). Tree automata, mu-calculus and determinacy. In Proc.FOCS,
pages 368–377. IEEE Computer Society Press.

Emerson, E. A., Jutla, C. S., and Sistla, A. P. (1993). On model-checking for fragments of mu-
calculus. In Courcoubetis, C., editor, Proc. CAV, LNCS 697, pages 385–396.

Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer.
Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6:512–535.
Jurdzinski, M. (2000). Small progress for solving parity games. In Proc. STACS, volume 1770
of LNCS, pages 290–301.

Jurdzinski, M., Kupferman, O., and Henzinger, T. (2003). Trading probability for fairness. In
Proc.CSL, LNCS 2471, pages 292–305.

Mitchell, J. C. (2001). Probabilistic polynomial-time process calculus and security protocol
analysis. In Proc. ESOP LNCS 2028, pages 23–29.

Pnueli, A. and Zuck, L. (1986). Verification of multiprocess probabilistic protocols. Distributed
Computing, 1:53–72.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY.

Thomas, W. (1990). Automata on infinite objects. In van Leeuwen, J., editor,Handbook of Theo-
retical Computer Science, volume B, chapter 4, pages 133–191. Elsevier Science Publishers

Thomas, W. (2003). Infinite games and verification In Poc. CAV LNCS 2725, pages 58–64.
Vardi, M. Y. (1985). Automatic verification of probabilistic concurrent finite-state programs. In
Proc. FOCS, pages 327–338, Portland, Oregon. IEEE.

Vöge, J. and Jurdzinski, M. (2000). A discrete strategy improvement algorithm for solving
parity games. In Proc. CAV, LNCS 1855, pages 202–215.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

