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Abstract. We introduce a symbolic model checking procedure for Probabilistic

Computation Tree Logic PCTL over labelled Markov chains as models. Model

checking for probabilistic logics typically involves solving linear equation sys-

tems in order to ascertain the probability of a given formula holding in a state.

Our algorithm is based on the idea of representing the matrices used in the lin-

ear equation systems by Multi-Terminal Binary Decision Diagrams (MTBDDs)

introduced in Clarke et al [14]. Our procedure, based on the algorithm used by

Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to

represent Markov chains, and is efficient because it avoids explicit state space

construction. A PCTL model checker is being implemented in Verus [9].

1 Introduction

Probabilistic techniques, and in particular probabilistic logics, have proved successful

in the specification and verification of systems that exhibit uncertainty, such as fault-

tolerant systems, randomized distributed systems and communication protocols. Mod-

els for such systems are variants of probabilistic automata (such as labelled Markov

chains used in e.g. [24, 34, 35, 17]), in which the usual (boolean) transition relation

is replaced with its probabilistic version given in the form of a Markov probability

transition matrix. The probabilistic logics are typically obtained by “lifting” a non-

probabilistic logic to the probabilistic case by constructing for each formula � and a

real number p in the [0; 1]-interval the formula [�]�p in which p acts as a threshold for

truth in the sense that for the formula [�]�p to be satisfied (in the state s) the proba-

bility that � holds in s must be at least p (see [26, 32, 25] for a different approach).

With such logics one can express quantitative properties such as “the probability of

the message being delivered within t time steps is at least 0:75” (see e.g. the timing or

average-case analysis of real-time or randomized distributed systems [24, 23, 5, 6, 2])

or (the more prevalent) qualitative properties, for which � is required to be satisfied by

almost all executions (which amounts to showing that � is satisfied with probability 1,

see e.g. [1, 17, 23, 24, 21, 22, 29, 30, 34]).? This research was sponsored in part by the National Science Foundation under grant no. CCR-

8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and by the

Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, the

Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.?? This research was sponsored in part by the European Union ESPRIT projects ASPIRE and

FIREworks, British Telecom, and the Nuffield Foundation.



Much has been published concerning the verification methods for probabilistic log-

ics. Probabilistic extensions of dynamic logic [26] and temporal and modal logics,

e.g. [2, 6, 17, 24, 21, 27, 30, 31, 34], and automatic procedures for checking satisfaction

for such logics have been proposed. The latter are based on reducing the calculation of

the probability of formulas being satisfied to a linear algebra problem: for example, in

[24], the calculation of the probability of ‘until’ formulas is based on solving the linear

equation system given by an n�nmatrix where n is the size of the state space. Optimal

methods are known (for sequential Markov chains, the lower bound is single exponen-

tial in the size of the formula and polynomial in the size of the Markov chain [18]),

but these algorithms are not of much practical use when verifying realistic systems. As

a result, efficiency of probabilistic analysis lags behind efficient model checking tech-

niques for conventional logics, such as symbolic model checking [11, 12, 10, 8, 15, 28],

for which tools capable of tackling industrial scale applications are available (cf. smv).

This is undesirable as probabilistic approaches allow one to establish that certain prop-

erties hold (in some meaningful probabilistic sense) where conventional model checkers

fail, either because the property simply is not true in the state (but holds in that state

with some acceptable probability), or because exhaustive search of only a portion of the

system is feasible.

The main difficulty with current probabilistic model checking is the need to inte-

grate a linear algebra package with a conventional model checker. Despite the power of

existing linear algebra packages, this can lead to inefficient and time consuming com-

putation through the implicit requirement for the construction of the state space. This

paper proposes an alternative, which is based on expressing the probability calculations

in terms of Multi-Terminal Binary Decision Diagrams (MTBDDs) [16]. MTBDDs are

a generalization of (ordered) BDDs in the sense that they allow arbitrary real numbers

in the terminal nodes instead of just 0 and 1, and so can provide a compact representa-

tion for matrices. As a matter of fact, in [13] MTBDDs have been shown to perform no

worse than sparse matrices. Thus, converting to MTBDDs ensures smooth integration

with a symbolic model checker such as smv and has the potential to outperform sparse

matrices due to the compactness of the representation, in the same way as BDDs have

outperformed other methods. As with BDDs, the precise time complexity estimates of

model checking for MTBDDs are difficult to obtain, but the success of BDDs in practice

[8, 28] serves as sufficient encouragement to develop the foundations of MTBDD-based

probabilistic model checkers.

In this paper we consider a probabilistic extension of CTL called Probabilistic Com-

putation Tree Logic (PCTL), and give a symbolic model checking procedure which

avoids the explicit construction of the state space. We use finite-state labelled Markov

chains as models. The model checking procedure is based on that of [24, 18], but we

use BDDs to represent the boolean formulas, and a suitable combination of BDDs and

MTBDDs for probabilistic formulas. Currently, we are implementing the PCTL sym-

bolic model checking in Verus [9]. For reasons of space we omit much detail from this

paper, which will be reported in [4]. We assume some familiarity with BDDs, automata

on infinite sequences, probability and measure theory [8, 33, 20].



2 Labelled Markov chains

We use discrete time Markov chains as models (we do not consider nondeterminism).

Let AP denote a finite set of atomic propositions. A labelled Markov chain over a set

of atomic propositions AP is a tuple M = (S;P; L) where S is a finite set of states,P : S � S ! [0; 1] a transition matrix, i.e.
Pt2S P(s; t) = 1 for all s 2 S,

and L : S ! 2AP a labelling function which assigns to each state s 2 S a set of

atomic propositions. We assume that there are 2n states for some n, and that there are

sufficiently many atomic propositions to distinguish them (i.e. L(s) 6= L(s0) for all

states s, s0 with s 6= s0). Any labelled Markov chain may be transformed into one

satisfying these conditions by adding dummy states and new propositions.

Execution sequences arise by resolving the probabilistic choices. Formally, an ex-

ecution sequence in M is a nonempty (finite or infinite) sequence � = s0s1s2; : : :
where si are states and P(si�1; si) > 0, i = 1; 2; : : :. The first state of � is denoted

by first(�). �(k) denotes the k + 1-th state of �. An execution sequence � is also

called a path, and a full path iff it is infinite. Path!(s) is the set of full paths � withfirst(�) = s. For s 2 S, let �(s) be the smallest �-algebra on Path!(s) which

contains the basic cylinders f� 2 Path!(s) : � is a prefix of �g where � ranges over

all finite execution sequences starting in s. The probability measure Prob on �(s) is

the unique measure with Prob f � 2 Path!(s) : � is a prefix of � g = P(�) whereP(s0s1 : : : sk) = P(s0; s1) �P(s1; s2) � : : : �P(sk�1; sk).
Example 1. We consider a simple communication protocol similar to that in [24]. The

system consists of three entities: a sender, a medium and a receiver. The sender sends

a message to the medium, which in turn tries to deliver the message to the receiver.

With probability 1100 , the messages get lost, in which case the medium tries again to

deliver the message. With probability 1100 , the message is corrupted (but delivered); with

probability 98100 , the correct message is delivered. When the (correct or faulty) message

is delivered the receiver acknowledges the receipt of the message. For simplicity, we

assume that the acknowledgement cannot be corrupted or lost. We describe the system

in a simplified way where we omit all irrelevant states (e.g. the state where the receiver

acknowledges the receipt of the correct message).

We use the following four states:sinit the state in which the sender passes the message

to the mediumsdel the state in which the medium tries to deliver the

messageslost the state reached when the message is lostserror the state reached when the message is corrupted

sinitsdel slostserrora1; a2 a2a1 11 0:980:01 0:01 1�
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The transition sdel ! sinit stands for the acknowledgement of the receipt of the correct

message, serror ! sinit for the acknowledgement of the receipt of the corrupted mes-

sage. We use two atomic propositions a1, a2 and the labelling function L(sinit) = ;,L(sdel) = fa1; a2g, L(slost) = fa2g, L(serror) = fa1g.



3 Probabilistic branching time temporal logic

In this section we present the syntax and semantics of the logic PCTL (Probabilistic

Computation Tree Logic) introduced by Hansson & Jonsson [24]4. PCTL is a proba-

bilistic extension of CTL which allows one to express quantitative properties of proba-

bilistic processes such as “the system terminates with probability at least 0:75”. PCTL

contains atomic propositions and the operators: next-step X and until U . The operatorsX and U are used in connection with an interval of probabilities. The syntax of PCTL

is as follows:� ::= tt j a j �1 ^ �2 j :� j [ X� ]wp j [ �1U�2 ]wp
where a is an atomic proposition, p 2 [0; 1], w is either � or >. Formulas of the

form X� or �1U�2, where �, �1, �2 are PCTL formulas, are called path formulas.

PCTL formulas are interpreted over the states of a labelled Markov chain, whereas path

formulas are interpreted over paths. The subscript w p denotes that the probability of

paths starting in the current state fulfilling the path formula is w p. Thus, PCTL is like

CTL, except that the path operatorsA andE in CTL have been replaced by the operator[ � ]wp. The usual derived constants and operators are: ff = :tt, �1 _ �2 = :(:�1 ^:�2), �1 ! �2 = :�1 _ �2. Operators for modelling “eventually” or “always” can

be derived by: [3�]�p = [ttU�]�p, [2�]�p = :[3:�]>1�p, and similarly for [�]>p.

Let M = (S;P; L) be a labelled Markov chain. The satisfaction relation j= �S � PCTL is given bys j= tt for all s 2 S s j= �1 ^ �2 iff s j= �1 and s j= �2s j= a iff a 2 L(s) s j= :� iff s 6j= �s j= [X�]wp iff Prob f� 2 Path!(s) : � j= X�g w ps j= [�1U�2]wp iff Prob f� 2 Path!(s) : � j= �1U�2g w p� j= X� iff �(1) j= �� j= �1U�2 iff there exists k � 0 with �(i) j= �1, i = 0; 1; : : : ; k� 1 and �(k) j= �2.

For a path formula f the set f� 2 Path!(s) : � j= fg is measurable [34, 18]. If s j= �
then we say s satisfies � (or � holds in s). The truth value of formulas involving the

linear time quantifiers3 and 2 can be derived:s j= [3�]wp iff Probf� 2 Path!(s) : �(k) j= � for some k � 0g w ps j= [2� ]wp iff Probf� 2 Path!(s) : �(k) j= � for all k � 0g w p.

Given a probabilistic process P , described by a labelled Markov chain M = (S;P; L)
with an initial state s, we say P satisfies a PCTL formula � iff s j= �. For instance, ifa is an atomic proposition which stands for termination and P satisfies [3a]�p then P
terminates with probability at least p.

4 Multi-terminal binary decision diagrams

Ordered Binary Decision Diagrams (BDDs) [7, 8, 15, 28] are a compact representation

of boolean functions f : f0; 1gn ! f0; 1g. They are based on the canonical represen-

tation of the binary tree of the function as a directed graph obtained through folding4 For simplicity we omit the bounded ‘until’ operator of [24].



internal nodes representing identical subfunctions (subject to an ordering of the vari-

ables to guarantee uniqueness of the representation) and using 0 and 1 as leaves. In [16]

it is shown how one can generalize BDDs to cogently and efficiently represent matrices

in terms of so-called multi-terminal binary decision diagrams (MTBDDs).

Formally, MTBDDs can be defined as follows. Let x1; : : : ; xn be distinct variables,

which we order by xi < xj iff i < j. A multi-terminal binary decision diagram

(MTBDD) over (x1; : : : ; xn) is a rooted, directed graph with vertex set V contain-

ing two types of vertices, nonterminal and terminal. Each nonterminal vertex v is la-

belled by a variable var(v) 2 fx1; : : : ; xng and two children left(v), right(v) 2 V .

Each terminal vertex v is labelled by a real number value(v). For each nonterminal

node v, we require var(v) < var(left(v)) if left(v) is nonterminal, and similarly,var(v) < var(right(v)) if right(v) is nonterminal. A suitable adaptation of the op-

erator REDUCE(�) [7] yields an operator which accepts an MTBDD as its input and

returns the corresponding reduced MTBDD.

Each MTBDD Q over fx1; : : : ; xng represents a function FQ : f0; 1gn ! IR,

and, vice versa, each function F : f0; 1gn ! IR can be described by a unique reduced

MTBDD over (x1; : : : ; xn). In the sequel, by the MTBDD for a functionF : f0; 1gn !IR we mean the unique reduced MTBDD Q with FQ = F . If all terminal vertices are

labelled by 0 or 1, i.e. if the associated function FQ is a boolean function, the MTBDD

specializes to a BDD over (x1; : : : ; xn).
MTBDDs are used to representD–valued matrices as follows. Consider a 2m�2m–

matrix A. Its elements aij can be viewed as the values of a function fA : f1; : : : 2mg �f1; : : : 2mg ! D, where fA(i; j) = aij . Using the standard encoding c : f0; 1gm !f1; : : : 2mg of boolean sequences of length m into the integers, this function may be

interpreted as a D–valued boolean function f : f0; 1gm ! D where f(x; y) =fA(c(x); c(y)) for x = (x1 : : : xm) and y = (y1 : : : ym). This transformation now al-

lows matrices to be represented as MTBDDs. In order to obtain an efficient MTBDD–

representation, the variables of f are permuted. Instead of the MTBDD for f(x1 : : :xm; y1 : : : ym), we use the MTBDD obtained from f(x1; y1; x2; y2; : : : xm; ym). This

convention imposes a recursive structure on the matrix from which efficient recursive

algorithms for all standard matrix operations are derived [16].

4.1 Representing labelled Markov chains by MTBDDs

To represent the transition matrix of a labelled Markov chain by a MTBDD we abstract

from the names of states and instead, similarly to [8, 15], use binary tuples of atomic

propositions that are true in the state. Let M = (S;P; L) be a labelled Markov chain.

We fix an enumeration a1; : : : ; an of the atomic propositions and identify each state s
with the boolean n-tuple e(s) = (b1; : : : ; bn) where bi = 1 iff ai 2 L(s). In what fol-

lows, we identify P with the function F : f0; 1g2n ! [0; 1], F (x1; y1; : : : ; xn; yn) =P((x1; : : : ; xn); (y1; : : : ; yn)), and represent M by the MTBDD for P over (x1; y1;: : : ; xn; yn). The associated MTBDD is denoted by P .

Example 2. For the system in Example 1 we use the encoding e(sinit) = 00, e(sdel) =11, e(slost) = 01 e(serror) = 10. The values of the matrix P, the function F and the

MTBDD P for F are are given by:



00 01 10 11

00 0 0 0 1

01 0 0 0 1

10 1 0 0 0

11 98100 1100 1100 0

F (x1; y1; x2; y2) = 8>><>>:1 : if x1y1x2y2 2 f0101; 0111; 1000g1100 : if x1y1x2y2 2 f1011; 1110g98100 : if x1y1x2y2 = 10100 : otherwise.x1 y1y1 x2x2y2 y2 y2 y2
i ii iii i i i

������9 ����=? ��	 �������� %��-&-
XXXXXXz ZZZZ~QQQsAAAAUJJĴ @@R%� %� ��	01 0:98 0:01

(The thick lines stand for the “right” edges, the thin lines for the “left” edges.)

4.2 Operators on MTBDDs

Our model checking algorithm makes use of several operators on MTBDDs proposed

in Bryant [7] and Clarke et al [14]. We briefly describe them below.

Operator BDD(�): takes an MTBDD Q and an interval I , and returns the BDD rep-

resenting the function F (x) = 1 if FQ(x) 2 I , else F (x) = 0. We obtain B =BDD(Q; I) from Q by changing the values of the terminal vertices (into 1 or 0 de-

pending on whether or not value(v) 2 I) and applying Bryant’s reduction procedureREDUCE(�). We writeBDD(Q;> p) rather thanBDD(Q; ]p;1[) andBDD(Q;�p) rather than BDD(Q; [p;1[).
OperatorAPPLY (�): allows elementwise application of the binary operator op to two

MTBDDs. If op is a binary operator on reals (e.g. multiplication � or minus�) and Q1,Q2 are MTBDDs over x then APPLY (Q1; Q2; op) yields a MTBDD over x which

represents the function f(x) = fQ1(x) op fQ2(x):
Operator COMPOSEk(�): This operator allows the composition of a real functionF : f0; 1gn+k ! IR and boolean functions Gi : f0; 1gn ! f0; 1g, i = 1; : : : ; k givingH(x) = F (x;G1(x); : : : ; Gk(x)).
Matrix and vector operators: The standard operations on matrices and vectors have

corresponding operations on the MTBDDs that represent them [13]. If MTBDDs A
and Q over 2n and n variables represent the matrix A and vector q respectively, thenMV MULTI(A;Q) denotes the MTBDD over n variables that represents the vector

A � q.

Operator SOLV E(�): [8] presents a method to decompose a regular matrix A into a

lower and upper triangular matrices and a permutation matrix. Using this LU-decompo-

sition we can obtain an operator SOLV E(A;Q) that takes as its input a MTBDD A
over 2n variables where the corresponding matrixA is regular and a MTBDD Q over n
variables which represents a vector q, and returns a MTBDD Q0 over n variables which



represents the unique solution of the linear equation system A � x = q. Alternatively,

we can use iterative techniques to solve the equations; our experiments indicate that this

performs better.

4.3 Description of (MT)BDDs by relational terms of the �-calculus

We will use the �-calculus as a notation for describing (MT)BDDs. In the algorithm

in the next section, all our (MT)BDDs are either over 2n variables (in which case they

represent 2n�2n matrices), or over n variables (in which case they represent vectors of

length 2n). For example, if B, C are BDDs over n variables and u = (u1; : : : ; un),v = (v1; : : : ; vn), then D = �uv [B(u) ^ C(v)] is a BDD over 2n variables; ifB;C represent the vectors (bi)1�i�n and (ci)1�i�n respectively, then D represents

the matrix whose element in the ith row and jth column is bi ^ cj . The BDD E =�u [B(u) ^ C(u)] is a BDD over n variables, representing the vector (bi ^ ci)1�i�n.

We write TRUE for the BDD over n variables which returns 1 in all cases of its

arguments. We write :B instead of �x[:B(x)], and B1 ^B2 for the BDD �x[B1(x)^B2(x)]. If x = (x1; : : : ; xn), y = (y1; : : : ; yn) then x = y abbreviates the formulaV1�i�n(xi $ yi).
We require one further operator. If the labelled Markov chainM = (S;P; L) is rep-

resented by a MTBDD P as described in Section 4.1, and B1, B2 are BDDs that repre-

sent the characteristic functions of subsets S1,S2 ofS, thenREACH(B1; B2; BDD(P;> 0)) represents the set of states s 2 S from which there exists an execution sequences = s0; s1; : : : ; sk with k � 0 and s0; : : : ; sk�1 2 S1, sk 2 S2, and which is used in

the operator UNTIL(�) defined in Section 5.

Operator REACH(�) Let B1, B2 be BDDs with n variables and T a BDD with 2n
variables. We define REACH(B1; B2; T ) to be the BDD over n variables which is

given by the �-calculus formula �Z �x [B2(x) _ (B1(x) ^ 9y[Z(y) ^ T (x; y)])]. This

operator uses the method of [8] to obtain the BDD for a term involving the least fixed

point operator �.

5 Model checking for PCTL

Our model checking algorithm for PCTL is based on established BDD techniques

(i.e. converting boolean formulas to their BDD representation), which it combines with

a new method, namely expressing the probability calculation for the probabilistic for-

mulas in terms of MTBDDs. In the case of [X�]wp the probability is calculated by

multiplying the transition matrix by the boolean vector set to 1 iff the state satisfies �,

whereas for [�1U�2]wp we derive an operator called UNTIL(�), based on [24], which

we express in terms of MTBDDs.

Let M = (S;P; L) be a labelled Markov chain which is represented by a MTBDDP over 2n variables as described in Section 4.1. For each PCTL formula �, we define

a BDD B[�] over x = (x1; : : : ; xn) that represents Sat(�) = fs 2 S : s j= �g. We

compute the BDD representation B[�] of a PCTL formula � by structural induction:B[tt] = TRUE B[ai] = �x [xi]B[:�] = :B[�] B[�1 ^ �2] = B[�1] ^ B[�2]



B[ [X�]wp ] = BDD (MV MULTI (P;B[�]); w p )B[ [�1U�2]wp ] = BDD ( UNTIL(B[�1]; B[�2]; P );w p ) )
The operator UNTIL(B[�1]; B[�2]; P ) assigns to each state s 2 S the probability

of the set of full paths from s satisfying �1U�2; formally, it represents the functionS ! [0; 1], s 7! ps, where ps = Prob f� 2 Path!(s) : � j= �1U�2g : Our method

for computing ps is based on the partition of S introduced in [24, 18], but we must

compute with BDDs. We first compute the set V = fs 2 S : ps > 0g and then setV 0 = V n Sat(�2). We then have: ps = 1 if s j= �2; ps = 0 if s 62 V ; and for the

remaining cases (i.e. those such that s 2 V 0)ps = Xt2V 0P(s; t) � pt + Xt2Sat(�2)P(s; t) � pt + Xt2SnV P(s; t) � pt:
In the second term, each pt = 1 and in the third term, each pt = 0. Therefore ps
(s 2 V 0) satisfies a jV 0j-dimensional equation system of the form x = A x + b, or

equivalently (I �A) x = b where I is the jV 0j � jV 0j identity matrix. One can show

this system has a unique solution using the method in [24, 18].

We now demonstrate how UNTIL(�) can be expressed in terms of MTBDDs. LetBi = B[�i], i = 1; 2. The set V is given by the BDDB = REACH(B1; B2; BDD(P;> 0)), V 0 by B0 = �x [B(x) ^ :B2(x)]. In order to avoid the BDD for the “new”

transition matrix A with dlog2 jV 0je variables, we instead reformulate the equation in

terms of the matrix P0 = (p0s;t)s;t2S which is given by: p0s;t = P(s; t) if s; t 2 V 0 andp0s;t = 0 in all other cases. The MTBDD P 0 for P0 can be obtained from the MTBDDP representing the Markov transition matrix. The following lemma shows that I � P0
is regular (we omit the proof).

Lemma 1. Let V 0, P0, I be as as above. Then, I � P0 is regular. The unique solution

x = (xs)s2S of the linear equation system (I � P0) � x = q where q = (qs), qs =Pt2Sat(�2)P(s; t) satisfies: xs = ps if s 2 V 0.
The algorithm for the operator UNTIL(�) is shown in Figure 1. It first calculates the

MTBDDs B and B0, for V and V 0. B2 is used as a mask to obtain P 0 from P ; it sets

to 0 the entries not corresponding to states in V 0. We next calculate the MTBDD Q
for the vector q, and use the operator SOLV E(�) to obtain the MTBDD Q0 satisfyingFQ0(s) = ps for all s 2 V 0. The result, the MTBDD Q00 for the vector p = (ps)s2S , is

obtained from the MTBDD for the function F (x) = maxf FB2(x); FQ0(x) �FB0(x) g
which usesQ0 for all s 2 V 0 and ensures that 1 is returned as the probability of the states

already satisfying �2.

Example 3. Let � = [ try to deliver U correctly delivered ]�0:9 wheretry to deliver = a2 and correctly delivered = :a1 ^ :a2. We consider the system
in Example 1. Our algorithm first computes the BDDs B1 for Sat(try to deliver) =fsdel; slostg, B2 for Sat(correctly delivered) = fsinitg, and then applies Algo-
rithm UNTIL(B1; B2; P ). V = fsinit; sdel; slostg is represented by the BDD B,V 0 = fsdel; slostg by the BDD B0. Thus, B2, P 0 and A stand for the matricesB2 = 0B@ 0 0 0 00 1 0 10 0 0 00 1 0 11CA P0 = 0B@0 0 0 00 0 0 10 0 0 00 1100 0 01CA A = 0B@1 0 0 00 1 0 �10 0 1 00 � 1100 0 1 1CA



Algorithm: UNTIL(B1; B2; P )
Input: A labelled Markov chain represented by a MTBDD P over 2n variables,

BDDs B1, B2 over n variables

Output: MTBDD X over n variables which represents the function that assigns to each

state the probability of a path from the state reaching a B2-state via an execution

sequence through B1-states

Method: B := REACH(B1; B2; BDD(P;> 0)); B0 := �x [ B(x) ^ :B2(x) ];B2 := �x1y1 : : : xnyn [B0(x1; : : : ; xn) ^B0(y1; : : : ; yn)];P 0 := APPLY (P;B2; �); I := �x1y1 : : : xnyn [x = y];A := APPLY (I; P 0;�); Q := MV MULTI (P; B2);Q0 := SOLV E(A;Q); Q00 := APPLY (B2; APPLY (Q0; B0; �);max);
Return(REDUCE(Q00)).

Fig. 1. Algorithm UNTIL(B1; B2; P )B2 (viewed as a vector) is q2 = (1; 0; 0; 0). Thus, Q is the MTBDD for the vectorP � q2 = (0; 0; 1; 0:98). We solve the linear equation system0B@ 1 0 0 00 1 0 �10 0 1 00 � 1100 0 11CA � x = 0B@ 00198100 1CA
which yields the solution x = (0; 9899 ; 1; 9899 ) (represented by the MTBDD Q0). More-

over, the MTBDD APPLY (Q0; B0; �) can be identified with the vector (0; 9899 ; 0; 9899 ).UNTIL(B1; B2; P ) and the BDD B[�] are of the following form.x1x2 x2jj j��	��	 ��	HHHjAAU %�01 9899 x1 x2j j? ��	HHHj%� 01
Thus, B[�] represents the characteristic function for Sat(�) = fsinit; sdel; slostg.

6 Implementing PCTL model checking

We are integrating PCTL symbolic model checking within Verus [9], which is a tool

specifically designed for the verification of finite-state real-time systems. Verus has

been used already to verify several interesting real-time systems: an aircraft controller,

a medical monitor, the PCI local bus, and a robotics controller. These examples have not

been originally modeled using probabilities. However, these systems exhibit behaviors

which can best be described probabilistically. The integration of PCTL model check-

ing with Verus allows us to verify stochastic properties of these and other interesting

applications.



The Verus language is an imperative language with a syntax resembling that of the C

language with additional special primitives to express timing aspects such as deadlines,

priorities, and delays. An important feature of Verus is the use of the wait statement

to control the passage of time. In Verus time only passes when a wait statement is

executed: non-wait statements execute in zero time. This feature allows a more accurate

control of time and leads to models with less states, since consecutive statements not

separated by a wait statement are compiled into a single state. To describe probabilistic

transitions we extend the Verus language with the probabilistic select statement.

From the Verus description of the application, the tool generates automatically a

labeled state-transition graph and the corresponding transition probability matrix using

BDDs and MTBDDs respectively.

The first experimental results of our PCTL symbolic model checking implementa-

tion are promising: Parrow’s Protocol (which is of a similar size to Example 1) can be

verified in less than a second. We have modeled a fault tolerant system [23, p. 168–171]

with three processors that has about 35000 reachable states (out of 108 states). A safety

property of this system took only a few seconds to check. Next we plan to evaluate

how well PCTL symbolic model checking performs as a formal verification tool in real

applications by modeling industrial size systems.

7 Concluding remarks and further directions

We have proposed a symbolic model checking procedure for the logic PCTL which we

are implementing using MTBDDs in Verus, thus forming the basis of an efficient tool

for verifying probabilistic systems. Our algorithm can be extended to cater for “bounded

until” of [24] which is useful in timing analysis of systems. We expect that MTBDDs

can be used to derive PCTL� model checking by applying the methods of [18]. Like-

wise, testing of probabilistic bisimulation and simulation [3, 19] can be implemented

using MTBDDs. An extension to the case of infinite state systems, perhaps by appropri-

ate combination with induction, as well as a generalization to allow non-determinism,

would be desirable.
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