Probabilistic weak simulation is decidable in polynomial time*

Christel Baiera, Holger Hermannsbc, and Joost-Pieter Katoenc

aInstitut für Informatik I, University of Bonn, Römerstraße 164, D-53117 Bonn, Germany
bDepartment of Computer Science, Saarland University, D-66123 Saarbrücken, Germany
cDepartment of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

This paper considers a weak simulation preorder for Markov chains that allows for stuttering. Despite the second-order quantification in its definition, we present a polynomial-time algorithm to compute the weak simulation preorder of a finite Markov chain.

Key words: algorithms, computational complexity, Markov chains, performance evaluation, simulation preorder

1. Introduction

Markov chains \cite{20,21} are one of the most important classes of stochastic processes. They are usually described by higher-level formalisms such as stochastic variants of Petri nets, process algebras, or automata networks. As the size of the Markov chain typically grows exponentially with the size of the high-level description, the infamous state-space explosion problem is often encountered in practice. To combat this problem, reduction techniques based on lumpability \cite{20} are often employed. This allows for the computation of steady-state and transient-state probabilities on the quotient of the Markov chain under lumping equivalence.

This paper considers a Moller-style weak simulation preorder on Markov chains, first introduced in \cite{5}. Whereas lumpability relates states that mutually mimic all individual steps, weak simulation requires that one state can mimic all stepwise behavior of the other, but not the converse, and – in contrast to strong simulation relations – only requires this for certain ("observable") transitions and not for other ("silent") transitions. This allows for a more radical reduction of the state space than using lumpability, while preserving (non-trivial) cumulative transient-state probabilities such as the probability to reach a set of goal states within a given time bound \cite{5}.

Efficient algorithms to construct the quotient space under (strong or weak) lumpability can be obtained with a variant of the partitioning-splitter technique for labeled transition systems \cite{23,16,11}. The strong simulation preorder can be computed by solving a network flow problem \cite{2}. The major contribution of this paper is a polynomial-time decision algorithm for the weak simulation preorder on Markov chains. The crux of the algorithm is to consider the check whether a state simulates another one as a linear programming (LP) problem. By showing that also the decision problem for weak simulation belongs to the complexity class \(P \), a complete picture on the complexity of branching-time relations on Markov chains is obtained. This result is more surprising than the corresponding one in the non-probabilistic setting as the definition of weak simulation on Markov chains relies on a second-order quantification over partitionings for the direct successors of states (rather than the transitive closure of the transition relation).

The results are presented for weak simulation on continuous-time Markov chains (CTMCs) and carry over in a straightforward manner to weak simulation for discrete-time Markov chains (DTMCs).

\footnote*{Supported by the VOSS (Validation of Stochastic Systems) project, funded by the NWO (Netherlands Organization for Scientific Research) and the DFG (German Research Council).}
2. Markov chains

Definition 1. A distribution on countable set S is a function $\mu : S \rightarrow [0, 1]$ with $\sum_{s \in S} \mu(s) \leq 1$. Distribution μ on S is called stochastic if $\sum_{s \in S} \mu(s) = 1$. Let Dist$(S)$ denote the collection of all distributions on S.

States of Markov chains are labeled by atomic propositions, i.e., elementary statements about states referring to e.g., the number of customers in a queue, the state color, or the like. Let AP be a fixed, finite set of atomic propositions.

Definition 2. A (labeled) CTMC \mathcal{M} is a tuple (S, R, L) where:

- S is a finite set of states
- $R : S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the rate matrix
- $L : S \rightarrow 2^{AP}$ is a labeling function that assigns to each state $s \in S$ the set $L(s)$ of atomic propositions that are valid in s.

For state $s \in S$, the exit rate $E(s)$ is defined by:

$$E(s) = \sum_{s' \in S} R(s, s')$$

A state s for which $E(s) = 0$ is called absorbing, otherwise it is called non-absorbing. It should be noted that Def. 2 does not require $R(s, s) = -\sum_{s' \neq s} R(s, s')$, as is often found in textbooks on CTMCs. The usual infinitesimal generator matrix Q is obtained from the rate matrix by subtracting the row-sums from the diagonal:

$$Q(s, s') = \begin{cases} R(s, s) - E(s) & \text{if } s = s' \\ R(s, s') & \text{otherwise} \end{cases}$$

In the traditional interpretation, at the end of a stay in state s, the system will move to a different state. According to Def. 2, state s has a self-loop if $R(s, s) > 0$. We thus allow the system to occupy the same state before and after taking a transition. The inclusion of self-loops does neither alter the transient nor the steady-state behavior of the CTMC and is also treated in this way in, among others, the textbook [25].

The rates intuitively specify the average delays of the transitions. More precisely, the exit rate $E(s)$ denotes that the probability of taking a transition from s within t time units equals $1 - e^{-E(s) t}$. $R(s, s') = \lambda > 0$ means that with probability $1 - e^{-\lambda t}$ the transition from s to s' is enabled within the next t time units - provided the current state is s. If $R(s, s') = 0$ then there is no transition possible from state s to s'. Let $\text{Post}(s) = \{ s' \in S \mid R(s, s') > 0 \}$ the set of successor states of state s. If $R(s, s') > 0$ for more than one state s', a race between the outgoing transitions from s exists. The probability that the transition from the current state s to s' is taken within the next t time units is:

$$\frac{R(s, s')}{E(s)} \left(1 - e^{-E(s) t}\right)$$

$P(s, s') = R(s, s')/E(s)$ denotes the probability that the delay of going from s to s' “finishes before” the delay of any other outgoing transition from s. Hence, $P(s, s')$ is the time-abstraction probability of moving from s to s' in a single step.

Important equivalence notions on CTMCs are lumping equivalences, also known as bisimulations. Let $\mathcal{M} = (S, R, L)$ be a CTMC and R an equivalence relation on S. R is a strong bisimulation [9,15] on \mathcal{M} if for $(s_1, s_2) \in R$:

$$L(s_1) = L(s_2) \text{ and } R(s_1, C) = R(s_2, C) \quad (1)$$

for all $C \in S/R$, where $R(s, C) = \sum_{s' \in C} R(s, s')$. s_1 and s_2 in S are strongly bisimilar if there exists a strong bisimulation R on \mathcal{M} with $(s_1, s_2) \in R$. R is a weak bisimulation [7,4] if the second conjunct in (1) is not required for $[s_1]_R$.

3. Weak probabilistic simulation

For labeled transition systems, state s' simulates s if for each successor t of s there is a successor t' of s' that simulates t. Simulation of two states is thus defined in terms of simulation of their successor states [22,17]. In the probabilistic setting, the target of a transition is in fact a probability distribution, and thus, the simulation relation \sqsubseteq needs to be lifted from states to distributions. This is done using weight functions [19,18].
Definition 3. Let \(\mu \in \text{Dist}(X) \) and \(\mu' \in \text{Dist}(Y) \) and \(\subseteq \subseteq X \times Y \). Then \(\mu \leq \mu' \) if and only if there exists a weight function \(\Delta : X \times Y \rightarrow [0, 1] \) for \(\subseteq \) such that:

1. \(\Delta(x, y) > 0 \) implies \(x \subseteq y \)
2. \(\mu(x) = K_1 \sum_{y \in Y} \Delta(x, y) \) for any \(x \in X \)
3. \(\mu'(y) = K_2 \sum_{x \in X} \Delta(x, y) \) for any \(y \in Y \),

where \(K_1 = \sum_{x \in X} \mu(x) \) and \(K_2 = \sum_{y \in Y} \mu'(y) \).

Intuitively, a weight function \(\Delta \) shows how the probability \(\mu(x) \) is distributed among the related states \(y \) such that \(\mu'(y) \) equals the total amount of probability it gets distributed by \(\Delta \). (Note that \(K_1 = K_2 = 1 \) for stochastic \(\mu \) and \(\mu' \).) \(\Delta \) is a probability distribution on \(X \times Y \) such that the probability to select \((x, y) \) with \(x \subseteq y \) is one. In addition, the probability to select an element in \(\subseteq \) whose first component is \(x \) equals \(\mu(x) \), and the probability to select an element in \(\subseteq \) whose second component is \(y \) equals \(\mu'(y) \).

Example 4. Let \(X = \{ s, t \} \) and \(Y = \{ u, v, w \} \) with \(\mu(s) = \frac{1}{2} \), \(\mu(t) = \frac{1}{6} \), and \(\mu'(u) = \frac{1}{4} \), \(\mu'(v) = \frac{4}{9} \) and \(\mu'(w) = \frac{1}{9} \). \(K_1 = K_2 = \frac{1}{2} \).

Note that \(\mu \) and \(\mu' \) are both sub-stochastic. Let \(\subseteq = (X \times Y) \setminus \{ (s, w) \} \). We have \(\mu \preceq \mu' \), as, e.g., weight function \(\Delta \) (cf. Fig. 1) defined by \(\Delta(s, u) = \Delta(s, v) = \Delta(t, w) = \frac{1}{4} \), \(\Delta(t, v) = \frac{3}{8} \), and \(\Delta(t, u) = \frac{1}{4} \) satisfies the constraints of Def. 3.

(End of example.)

![Figure 1. Weight function for ⊆](image)

The intention of a simulation preorder on CTMCs is to ensure that state \(s_2 \) simulates \(s_1 \) if and only if (i) \(s_2 \) is “faster than” \(s_1 \) and (ii) the time-abstract behavior of \(s_2 \) simulates that of \(s_1 \). This is achieved by the following definition that additionally incorporates a notion of stuttering [8,13].

Definition 5. [5,4] Let \(\mathcal{M} = (S, R, L) \) be a CTMC. Relation \(\subseteq \subseteq S \times S \) is a weak simulation if and only if for all states \(s_1, s_2 \in S \) with \(s_1 \subseteq s_2 \) we have that \(L(s_1) = L(s_2) \) and there exist functions \(\Delta : S \times S \rightarrow [0, 1] \), \(\delta_i : S \rightarrow [0, 1] \) and sets \(U_i, V_i \subseteq S \) for \(i = 1, 2 \) with:

\[
U_i = \{ u_i \in \text{Post}(s_i) \mid \delta_i(u_i) > 0 \}
\]

\[
V_i = \{ v_i \in \text{Post}(s_i) \mid \delta_i(v_i) < 1 \}
\]

such that:

1. \(s_1 \subseteq s_2 \) for any \(s_1 \in U_i \) and \(s_1 \subseteq s_2 \) for any \(s_2 \in V_i \),
2. \(\Delta(u_i, u_2) > 0 \) implies \(u_i \in U_i \) and \(u_1 \subseteq u_2 \),
3. if \(K_1 > 0 \) and \(K_2 > 0 \) then for any \(w \in S \):

\[
K_1 \sum_{u_i \in U_i} \Delta(w, u_i) = \delta_i(w) \mathbf{P}(s_i, w)
\]

and

\[
K_2 \sum_{v_i \in V_i} \Delta(u_i, w) = \delta_i(w) \mathbf{P}(s_2, w)
\]

4. \(K_1 E(s_1) \leq K_2 E(s_2) \)

where \(K_i = \sum_{u_i \in U_i} \delta_i(u_i) \mathbf{P}(s_i, u_i) \) for \(i = 1, 2 \) .

In the sequel, \(\subseteq \) denotes a weak simulation. Def. 5 can be justified as follows. The successor states of \(s_i \) are grouped into the subsets \(U_i \) and \(V_i \). Although it is not required that \(U_i \) and \(V_i \) are disjoint, to understand the definition first consider \(U_i \cap V_i = \emptyset \). (The fact that we allow a non-empty intersection has technical reasons that will be explained below.) \(K_i \) denotes the total probability to move from \(s_i \) within one transition to a state in \(U_i \). Vice versa, with probability \(1 - K_i \), in state \(s_i \) a transition to some state in \(V_i \) is made (cf. Fig. 2). The first condition states that the grouping of successor states into \(V_i \) and \(U_i \) is such that
any state in V_2 simulates s_1 and that s_2 simulates any state in V_1. Intuitively, we interpret the moves from s_i to a V_i-state as silent transitions. The first condition of Def. 5 thus guarantees that any such transition is a “stutter” step. The second and third condition require the existence of a weight function Δ that relates the conditional probabilities to move from s_1 to a U_1-state and the conditional probabilities for s_2 to move to a U_2-state. Thus, Δ is a weight function for the probability distributions $\delta_i(\cdot) \cdot P(s_i, \cdot)/K_i$. Intuitively, the transitions from s_i to a U_i-state are considered as observable moves and the second and third condition are the continuous versions of similar conditions for strong simulation in the discrete-time case [19]. Finally, the fourth condition states that s_2 is “faster than” s_1 in the sense that the total rate to move from s_2 to a U_2-state is at least the total rate to move from s_1 to a U_1-state.

In most cases $\delta_i(s) \in \{0, 1\}$ for any state s, i.e., δ_i is the characteristic function of U_i, and the sets U_i and V_i are disjoint. In general, though, U_i and V_i may contain fragments of states. That is, we deal with functions δ_i where $0 \leq \delta_i(s) \leq 1$. Intuitively, the $\delta_i(s)$-fragment of state s belongs to U_i, while the remaining part (the $(1-\delta_i(s))$-fragment) of s belongs to V_i. The use of fragments of states is discussed in the following example. It is needed to guarantee the transitivity of the weak simulation preorder.

Example 6. Consider the two CTMCs depicted in Fig. 3, where $L(s_1) = L(s_3) = L(s'_1) = L(s'_3) = \{ a \}$; the other states are labeled by b. Intuitively, s_1 is “slower than” s'_1. However, when we require the sets U_1, V_1 in Def. 5 to be disjoint, then $s_1 \not\subseteq s'_1$. This can be seen as follows. We have $s_1 \not\subseteq s'_3$ (and hence, $V_2 = \emptyset$) as s_1 moves with rate 1 to a b-state while the total rate for s'_3 to move to a b-state is smaller (i.e., $\frac{1}{2}$). Hence, the only chance to define the components in Def. 5 is $V_2 = \emptyset$ and $U_2 = \{ s'_2, s'_3 \}$. Because s'_2 and s'_3 are not comparable using the simulation preorder (as they have different labels), we would have to define $U_1 = \{ s_2, s_3 \}$ and $V_1 = \emptyset$. But then, the weight-function condition is violated because s_1 moves with probability $\frac{1}{2}$ to a b-state while the probability for s'_1 to reach a b-state within one step is $\frac{1}{3}$.

On the other hand, when we allow s_3 to be split: one half of s_3 belongs to U_1, one half to V_1, i.e., $\delta_1(s_3) = \frac{1}{2}$ and $U_1 = \{ s_2, s_3 \}$, $V_1 = \{ s_3 \}$ then we get that with $\delta_1(s_2) = \delta_2(s'_2) = \frac{1}{2}$, $U_2 = \{ s'_2, s'_3 \}$, $V_2 = \emptyset$, and $\subseteq = \{ (s_1, s'_1), (s_2, s'_2), (s_3, s'_1), (s_4, s'_4), (s_3, s'_3), (s_2, s'_4) \}$ the conditional probabilities for the U_i-states are related via \preceq. Note that $K_1 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$ and $K_2 = 1$. Hence, we may deal with $\Delta(s_2, s'_2) = \frac{1}{3}$ and $\Delta(s_3, s'_3) = \frac{1}{3}$ (End of example.)

Remark 7. Suppose $s_1 \not\subseteq s_2$ and one of the states is absorbing. If s_2 is absorbing (i.e., $E(s_2) = 0$) then $K_1 \cdot E(s_1) = 0$. Hence, either s_1 is absorbing or $K_1 = 0$. In the latter case, $U_1 = \emptyset$, i.e., all successor states of s_1 belong to V_1 and are simulated by s_2 (by condition 1. in Def. 5). If s_1 is absorbing, then s_2 may be an arbitrary state with $L(s_1) = L(s_2)$. The observation that absorbing state s_1 is simulated by any state s_2 with the same labeling is natural for any type of simulation that abstracts from silent moves. Note that in absorbing states of a CTMC just time advances. (End of remark.)
4. Algorithm for weak simulation

Theorem 1. Given a CTMC with finite state space S, the quotient space with respect to the weak simulation preorder \sqsubseteq can be computed in time and space $O(poly(|S|))$.

This result is proven by presenting a polynomial-time algorithm that computes the weak simulation preorder of a given CTMC. Let (S, R, L) be a CTMC. The main procedure of our algorithm (cf. Alg. 1) computes the weak simulation preorder in an iterative manner, for the non-probabilistic case. Starting from the trivial preorder

$$R = \{(s_1, s_2) \in S \times S \mid L(s_1) = L(s_2)\}$$

pairs (s_1, s_2) are successively removed from R if s_1 has a transition that cannot be “simulated” by a transition of s_2 where simulation is understood with respect to the current relation R. This process is continued until no such pair of states is left in R. The loop invariant of this procedure is that R is coarser than \sqsubseteq.

Algorithm 1 Schema for computing \sqsubseteq

(* Input: CTMC with finite state space S *)

(* Output: the weak simulation preorder \sqsubseteq *)

1. $R := \{(s_1, s_2) \in S \times S \mid L(s_1) = L(s_2)\}$
2. while $\exists (s_1, s_2) \in R$ such that $s_1 \not\sqsubseteq s_2$ do
 1. $R := R \setminus \{(s_1, s_2)\}$
3. return R (* $R = \sqsubseteq$ *)

Several improvements of this naive schema are possible, e.g., in the style of [14]. However, in this paper we concentrate to the differences to the non-probabilistic setting. The computational procedure explicitly relies on a test whether s_2 simulates (under a fixed R) s_1. In order to do so, according to Def. 5 we need a method to check whether components $\delta_t, U_t, V_t, K_t, \Delta$ can be constructed for (s_1, s_2). We show that this problem can be reduced to a linear programming (LP) problem. Thus, checking whether one state weakly simulates another one amounts to checking whether a certain set of linear inequations and equations has a solution. This is done as follows. Let $(s_1, s_2) \in R$. Note that by construction of R, s_1 and s_2 are equally labeled. Let:

$$s \downarrow_R = \{ s' \in S \mid (s, s') \in R \}$$

be the downward closure of s with respect to R, and similarly

$$s \uparrow_R = \{ s' \in S \mid (s', s) \in R \}$$

be the upward closure of s with respect to R. First, distinguish the following cases:

1. $\text{Post}(s_1) \subseteq s_2 \downarrow_R$. Then, the conditions in Def. 5 are fulfilled for (s_1, s_2) by setting:

 $V_1 = \text{Post}(s_1), U_1 = \emptyset$, and $U_2 = \text{Post}(s_2)$

2. $E(s_2) = 0$, i.e., s_2 is absorbing. Then the observations in Remark 7 can be applied to check whether the conditions of Def. 5 are fulfilled for (s_1, s_2).

Note that these checks can be done in polynomial time. We now consider the remaining case. Assume s_2 is non-absorbing and s_1 has at least one successor state $u_1 \in \text{Post}(s_1)$ such that $u_1 \not\in s_2 \downarrow_R$. As $u_1 \not\sqsubseteq s_2$, and all states in V_1 have to be simulated by s_2 (cf. condition 1. of Def. 5), state $u_1 \in U_1$. Thus, $K_1 > 0$, and, by condition 4. of Def. 5, $K_2 > 0$.

Consider the following variables:

- x and y which stand for the values $x = \frac{1}{K_1}$ and $y = \frac{1}{K_2}$, respectively
- x_u for $u \in S$ with $(u, s_2) \in R$ which stands for the value $x_u = \frac{\Delta_u^{(s_2)}}{K_2}$
- y_u for $u \in S$ with $(s_1, u) \in R$ which stands for the value $y_u = \frac{\Delta_u^{(s_1)}}{K_2}$
- z_{u_1,u_2} for each pair of states $(u_1, u_2) \in R$.

We write $\Delta(u_1, u_2)$ instead of z_{u_1,u_2}, and put:

$$x_u = x \text{ if } u \in S \setminus s_2 \downarrow_R$$

$$y_u = y \text{ if } u \in S \setminus s_1 \uparrow_R.$$
This is justified as follows. Each state u in $\text{Post}(s_1) \setminus s_2 \downarrow_R$ has to be put completely in U_1. Thus, $\delta_1(u) \equiv 1$, and hence:

$$x_u = x = \frac{1}{K_2} = \frac{\delta_1(u)}{K_1}$$

By a symmetric argument, we put $y_u = y$ if $u \not\in s_1 \uparrow_R$.

The linear program now consists of the following equations and inequalities:

$$
\sum_{u_1 \in U_1} \Delta(u_1, u_2) = P(s_2, u_2) y_{u_2} \text{ for } u_2 \in S \\
\sum_{u_1 \in U_1 \cup u_2} \Delta(u_1, u_2) = P(s_1, u_1) x_{u_1} \text{ for } u_1 \in S \\
\sum_{u_1 \in S} x_{u_1} \cdot R(s_1, u_1) = E(s_1) \\
\sum_{u_2 \in S} y_{u_2} \cdot R(s_2, u_2) = E(s_2) \\
x \geq 1 \\
y \geq 1 \\
x \geq x_u \geq 0 \text{ if } u \in s_2 \downarrow_R \\
y \geq y_u \geq 0 \text{ if } u \in s_1 \uparrow_R \\
y \cdot E(s_1) \leq x \cdot E(s_2)
$$

This LP problem has $O(|S|^2)$ variables and $4 |S| + 5$, i.e., $O(|S|)$ equations. It is justified as follows. The first two equations correspond to condition 3. in Def. 5, rewritten as:

$$\sum_{u_1 \in U_1} \Delta(u_1, u_2) = \frac{\delta_2(u_2) \cdot P(s_2, u_2)}{K_2} = \frac{P(s_2, u_2) \cdot \delta_2(u_2)}{y_{u_2}}$$

and similar for the symmetric condition for u_2.

The third and fourth equations formalize the requirements for K_1:

$$\sum_{u_1 \in S} \delta_1(u_1) \cdot R(s_1, u_1) = K_1 \cdot E(s_1), \quad i = 1, 2.$$

The requirements $x \geq 1$ and $y \geq 1$ guarantee that $0 < K_1 \leq 1$ and $0 < K_2 \leq 1$

while the conditions $x \geq x_u \geq 0$ and $y \geq y_u \geq 0$ ensure that $0 \leq \delta_i(u) \leq 1$, for $i = 1, 2$. Finally, the last inequality is obtained by rewriting the rate condition:

$$K_1 \cdot E(s_1) \leq K_2 \cdot E(s_2)$$

by

$$\frac{1}{K_2} \cdot E(s_1) \leq \frac{1}{K_1} \cdot E(s_2).$$

It is not difficult to see that any solution to the above LP problem induces components δ_i, U_i, V_i, K_i and Δ such that the conditions in Def. 5 are fulfilled. Vice versa, components δ_i, U_i, V_i, K_i and Δ as in Def. 5 induce a solution of the above linear program.

Example 8. The linear equations obtained for checking whether s_1 is simulated by s'_1 for the CTMCs in Fig. 3 given that R equals \subseteq as are follows. For illustration purposes we use a particular solution (witnessing that $s_1 \subseteq s'_1$) in our explanations. The state space is comprised of the disjoint union of the two CTMCs. The variables solving the system are: $x = \frac{4}{5}, y = 1, x_{s_1} = 0, x_{s_2} = x_{s_3} = x = \frac{4}{5}, x_{s_4} = \frac{2}{5}$, and $y_{s'_1} = y_{s'_2} = y_{s'_3} = y_{s'_4} = y = 1$. For any other state t, x_t and y_t equal 0. The side conditions on x, y and x_t, y_t and the rate condition (last equation, i.e., $1 - 2 \leq \frac{4}{5}$) are straightforwardly fulfilled. The condition on the exit rate of state s'_1 (fourth condition) amounts to

$$y_{s'_2} \cdot R(s'_1, s'_2) + y_{s'_3} \cdot R(s'_1, s'_3) = E(s'_1)$$

which is satisfied as $y_{s'_2} = y_{s'_3}$. In a similar way we obtain for the exit rate condition of s_1 (third equation):

$$x_{s_2} \cdot R(s_1, s_2) + x_{s_3} \cdot R(s_1, s_3) = E(s_1).$$

To illustrate the weight function condition, consider the second equation. The interesting cases occur for s_1 through s_4. For $u_1 = s_1$ we obtain:

$$\sum_{u_2 \in \{s'_2\}} \Delta(s_1, u_2) = P(s_1, s_2) x_{s_2}$$

while the conditions $x \geq x_u \geq 0$ and $y \geq y_u \geq 0$ ensure that $0 \leq \delta_i(u) \leq 1$, for $i = 1, 2$. Finally, the last inequality is obtained by rewriting the rate condition:

$$K_1 \cdot E(s_1) \leq K_2 \cdot E(s_2)$$

by

$$\frac{1}{K_2} \cdot E(s_1) \leq \frac{1}{K_1} \cdot E(s_2).$$

It is not difficult to see that any solution to the above LP problem induces components δ_i, U_i, V_i, K_i and Δ such that the conditions in Def. 5 are fulfilled. Vice versa, components δ_i, U_i, V_i, K_i and Δ as in Def. 5 induce a solution of the above linear program.
A similar equation is obtained for state s_4. For $u_1 = s_2$ we yield, using $s_2 \uparrow_R = \{s'_2, s'_4\}$:

$$\Delta(s_2, s'_2) + \Delta(s_2, s'_4) = P(s_1, s_2) x_{s_2}$$

Finally, it can be checked that for s_3 with $s_3 \uparrow_R = \{s'_3\}$ the obtained equation is also satisfied. To summarize, the LP problem has a solution, and therefore s'_1 simulates s_1 under R. (End of example.)

Using efficient well-known methods for solving LP problems, the test whether a state weakly simulates another one can be performed in polynomial time. Note that it suffices to check whether the LP problem has a solution; the solution itself is not needed. In the main algorithm where pairs (s_1, s_2) are successively removed from R, the number of iterations is bounded $|S|^2$. Thus, one has to solve $|S|^2$ LP problems, each being linear in $|S|$. To summarize, the weak simulation preorder on CTMCs can be computed in polynomial time. The weak simulation preorder of a DTMC (see [4]) can be computed with a slightly adapted version of this algorithm.

5. Related work

Decision algorithms for equivalences and preorders have been reported in the literature for various variants of Markov chains. Checking lumpability (or: strong bisimulation) on Markov chains can be done in time $O(m \log n)$, where n is the number of states and m is the number of transitions [11]. This algorithm can also be employed for weak bisimulation. In the discrete-time case, checking strong bisimulation takes $O(m \log n)$ time [16], whereas weak bisimulation takes $O(n^3)$ time [3]; slight variants thereof [1,6,10,24] can also be checked in polynomial time, whereas the incorporation of non-determinism (Markov decision processes) may yield an exponential time complexity [10]. The computation of the strong simulation preorder, i.e., a stuttering-free simulation, for DTMCs (and Markov decision processes) can be reduced to a maximum flow problem [2] and has a worst case time complexity of $O((m n^6+m^2 n^3)/\log n)$.

6. Conclusions

This paper presented a polynomial-time algorithm for computing the weak simulation preorder (\preceq) of a finite-state Markov chain. The crux of our algorithm is to consider the check whether a state simulates another one as a linear programming problem. Improvements to our basic algorithm are not considered here, but we expect that techniques from, e.g., [12,14,27], can be employed to speed up the algorithm.

Weak simulation has some interesting properties. The kernel of \preceq, i.e., $\preceq \cap \preceq^{-1}$, is coarser than weak bisimulation. Moreover, \preceq preserves bounds on probabilistic reachability properties in the following sense [5]. Let $T \subseteq S$ be a non-empty set of states, $s_1, s_2 \in S$ be states of the CTMC and d a positive real number. Then:

$$s_1 \preceq s_2 \Rightarrow \text{Prob}(s_1 \preceq^d T) \leq \text{Prob}(s_2 \preceq^d T)$$

where $\text{Prob}(s \preceq^d T)$ denotes the probability to reach some state in T within d time units when starting in state s.

REFERENCES

