
Metric Semantics forTrue Concurrent Real TimeJoost-Pieter Katoen a;1 Christel Baier b Diego Latella caLehrstuhl f�ur Informatik VII, Friedrich-Alexander-Universit�atErlangen-N�urnberg, Martensstrasse 3, 91058 Erlangen, GermanybFakult�at f�ur Mathematik und InformatikUniversit�at Mannheim, 68131 Mannheim, GermanycCNUCE Istituto del CNR, Via Santa Maria 36, 56100 Pisa, ItalyAbstractThis paper investigates the use of a complete metric space framework for providingdenotational semantics to a real-time process algebra. The study is carried out ina non-interleaving setting and is based on a timed extension of Langerak's bundleevent structures, a variant of Winskel's event structures. The distance function ofthe metric is based on the amount of time to which event structures do `agree'. Weshow that this intuitive notion of distance is a pseudo metric (but not a metric) onthe set of timed event structures. A generalisation to equivalence classes of timedevent structures in which we abstract from event identities and non-executableevents (events that can never occur) is shown to be a complete ultra-metric space.We present an operational semantics for the considered language and show that themetric semantics is an abstraction of it. The operational semantics is characterisedby the absence of synchronisation on the advance of time as opposed to the opera-tional semantics of most real-time calculi. The consistency between our metric andan existing cpo-based denotational semantics is brie
y investigated.Key words: consistency of semantics; denotational semantics; (bundle) eventstructure; interleaving; metric space; process algebra; real-time; semantics; trueconcurrency1 Currently at the Formal Methods and Tools Group, University of Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands.
Preprint submitted to Elsevier Preprint 11 June 1999

1 IntroductionIn this paper we consider a metric denotational semantics for an algebraicspeci�cation language that besides concurrency, synchronisation, and non-determinism, encompasses the notion of real-time. This study is carried outin a branching-time non-interleaving context, using the model of event struc-tures. These structures typically consist of a set of labelled events, a causalityrelation (denoted 7!) between events, and a con
ict relation (denoted #) be-tween events. An event models the occurrence of the action as indicated byits label. The causality relation models a `happens before' relation in the fol-lowing sense: e 7! e0 implies that if event e0 happens then event e must havehappened before. The con
ict relation models a choice: if e# e0 then eitherevent e or event e0 can happen, but they cannot occur both. Usually the eventidentities are not of importance and isomorphism classes of event structuresare considered. If no confusion arises, action labels (a; b; : : :) are used insteadof event identities (e; e0; : : :).1.1 Prime event structures and TCSPFor the untimed case, Loogen and Goltz [29] propose a metric denotationalsemantics for theoretical CSP using prime event structures, the most elemen-tary form of event structures. In prime event structures [34], the causalityrelation 7! is a partial-order and the con
ict relation # is irre
exive and sym-metric. Con
icts are inherited as follows: if e1# e2 and e1 7! e3 then e2# e3.Pictorially: cc implies ababwhere dots represent events, directed arrows model 7! and dotted lines model#. The interpretation of prime event structures is de�ned in terms of sets ofcon�gurations, con
ict-free sets of events that are downwards closed under7!, ordered under set inclusion. For instance, the maximal con�gurations ofthe prime event structure above are f a g and f b; c g. To assign a meaningto recursive TCSP speci�cations, Loogen and Goltz apply a metric approachto (isomorphism classes of) so-called �nitely approximable prime event struc-tures. In a nutshell, in such structures the depth of each event | the lengthof the longest causal chain pointing to that event | is �nite, and for each�nite depth, there is only a �nite number of events of that depth. The notionof distance between prime event structures E1 and E2 is based on truncation:d(E1; E2) =df inf f 2�n j E1 � n = E2 � n g2

where E � n denotes the restriction of E to all events with depth at most n. Theset of �nitely approximable prime event structures with distance d constitutesa complete ultra-metric space, and the operators of TCSP are non-expansivewith respect to d. For example, for pre�xing and parallel composition this isguaranteed by the following inequalities:d(a : E; a : E 0)6 2�1 � d(E; E 0)d(E jjAF ; E 0 jjAF 0)6maxf d(E; E 0); d(F ;F 0) g:The semantics for TCSP-expression P and any �xed declaration decl of proces-ses can then be considered as the unique �xed point of a higher-order functionFdecl over the domain of functions from TCSP-expressions (Expr) to (isomor-phism classes of) �nitely approximable prime event structures (PESfin='iso).The distance d is lifted to this function domain in the following standard way[12]: ~d(�1; �2) =df supf d(�1(P); �2(P)) j P 2 Expr gfor �1; �2 : Expr �! PESfin='iso. For each guarded declaration decl, functionFdecl is contracting with respect to distance ~d. Due to Banach's theorem, thecontractiveness of Fdecl guarantees that a �xed point of Fdecl exists and that itis unique. Declaration decl is guarded if any process instantiation is precededby a pre�x for each process de�nition in decl. As a �nal result, Loogen andGoltz show that for �nite processes the metric semantics is weakly bisimilarto the interleaving semantics of TCSP; a result that later has been extendedto recursive processes [7].1.2 Bundle event structures and LOTOSIn this paper we consider a real-time extension of a process algebra based onthe internationally standardised speci�cation language LOTOS [13] (Languageof Temporal Ordering Speci�cation). As semantic domain we take a timed ex-tension of Langerak's bundle event structures [26,27], a variant of Winskel'sevent structures that has been shown to adequately deal with the operatorsof LOTOS | in particular, parallel composition and disruption. Bundle eventstructures are strictly more expressive than prime event structures, i.e. theredo exist bundle event structures for which there does not exist a prime eventstructure with the same set of con�gurations (and not the reverse). A compar-ison of the expressive power of bundle event structures compared to Winskel'sstable [40] and Boudol and Castellani's
ow event structures [14] is given in[26]. 3

In bundle event structures, 7! is a relation between a set of events that arein mutual con
ict and an event. The con
ict relation is irre
exive, but notrequired to be symmetric. It is denoted by; and depicted by a dotted arrow.In case e; e0 and e0 ; e we use a dotted line. Intuitively,ab c ab cand (b)(a)denote that (a) event c can happen if either a or b has happened before,respectively that (b) event c disables the occurrence of a and b, i.e. neithera nor b can happen after c happened (notice that c can happen after a, or b,or both a and b instead). Due to the inheritance of con
icts, correspondingprime event structures would lead to copying of events:ab cc ab ccccand(a) (b)This property makes prime event structures less attractive as a semanticalmodel for a process algebra like LOTOS. Due to the increased expressive powerof bundle event structures, an interpretation in terms of con�gurations orderedunder set inclusion is insu�cient. For instance, the bundle event structuresba baand(a) (b)have both as maximal con�guration f a; b g, whereas b can happen after theoccurrence of a in the left (a), but not in the right (b) structure. Instead,the interpretation is de�ned in terms of labelled partial-orders ordered underpre�xing [38], or equivalently, in terms of event traces. The maximal eventtraces of the structures above are (a) a b and b a, and (b) a b and b. Langerakuses bundle event structures to give a non-interleaving semantics to LOTOS[26,27] and although he provides a meaning to recursive processes using apartial-order approach, it seems that (a slight modi�cation of) the more ab-stract metric approach of Loogen and Goltz can be used equally well.
4

1.3 Real-time event structures and Timed LOTOSIn the timed extension of bundle event structures of Katoen et al. [23] thebasic idea is to associate relative delays to causality relations (the bundles)and to impose urgency on certain events (open dots). From now on, we referto this extension as timed event structures. The suitability of this timed trulyconcurrent model for modelling time-critical systems is addressed in [23] andis not further discussed here. The timed event structuresand(a) (b)a c[7; 7][2; 10]a c[7; 7][2; 10] � �
both denote that after the occurrence of event a, either event � happens after7 time units, or that c happens after time t with 2 6 t 6 10. In structure (b)event � is urgent, i.e. it must happen 7 time units since the occurrence of aif c did not yet occur, so preventing c from happening thereafter. The inter-pretation of timed event structures is de�ned in terms of timed event traces.Example maximal traces of the timed structures above are (a) (a; ta) (�; t�)with t� = ta+7 and (a; ta) (c; tc) with 2 6 tc�ta 6 10 and (b) (a; ta) (�; t�)with t� = ta+7 and (a; ta) (c; tc) with 2 6 tc�ta 6 7.Timed event structures are used as a non-interleaving semantical model for areal-time process algebra where pre�xing a : P is replaced by timed pre�xingaI : P where I denotes a set of time instants. Moreover, a timeout operatorP �tQ is included that behaves initially like P , but in which control is passedto Q if P does not perform an action 2 before time t.In order to assign a meaning to recursive speci�cations we follow a similarapproach as Loogen and Goltz. The basic idea of our metric semantics is toconsider behaviours of timed event structures up to a certain time. That is,the distance function is based on the amount of time to which timed eventstructures do `agree': d(E1; E2) =df inf f 2�t j E1 � t = E2 � t gwhere E � t denotes the restriction of E to all events that can occur before timet. We show that this intuitive notion of distance is a pseudo-metric (but nota metric) on TES, the set of timed event structures. As a �rst step towardsobtaining a metric (rather than a pseudo-metric), we consider TES modulo2 Opposed to timed CSP [37] we do not distinguish between the occurrence ofinternal and external actions in P . 5

an isomorphism 'iso that abstracts from event identities (as usual) and fromnon-executable events, events that can never appear. 3 Secondly, we re�ne thisnotion towards �nitely approximable timed event structures modulo 'iso andshow that this quotient model is a complete ultra-metric space. A timed eventstructure is called �nitely approximable if the number of events that can occurbefore time t is �nite, for any t. We show that the operators of our real-timeprocess calculus are non-expansive with respect to our notion of distance, forinstance, timed pre�xing is contractive and timeout is non-expansive:d(aI : E; aI : E 0)6 2�inf (I) � d(E; E 0)d(E �t F ; E 0 �t F 0)6maxf d(E; E 0); 2�t � d(F ;F 0) g:Similarly as we have discussed for the case for prime event structures, thesemantics is now de�ned as the unique �xed point of a higher-order functionFdecl. As a main result we obtain for any expression with �xed declarationdecl that d(Fdecl(�1); Fdecl(�2)) 6 2�tg(decl) � ~d(�1; �2)where tg(decl), the time-guard of decl, is the minimal time between successiveprocess instantiations in any process de�nition in decl and �1; �2 : Expr �!TESfin='iso . Thus, for time-guarded processes | processes that cannot gen-erate instantaneous recursive process instantiations | the function Fdecl hasa unique �xed point.Finally, we present a structured operational semantics for the considered lan-guage (recalled from Katoen et al. [23]) and show that this semantics isstrongly timed bisimilar to an interleaving perspective of our metric trueconcurrent semantics. The operational semantics is characterised by the ab-sence of synchronisation on the advance of time as opposed to the operationalsemantics of most real-time process calculi [33]. The traces generated fromour operational semantics can be considered as equivalence classes (under re-ordering of causally independent events) whereas more standard operationalsemantics for real-time calculi lead to the time-consistent representatives ofeach equivalence class, and this is less abstract. We also brie
y show that themetric semantics presented in this paper is an abstraction of the cpo-basedsemantics of Katoen et al. [23].3 Non-executable events do not appear in the untimed setting with prime eventstructures.
6

1.4 Related workSeveral real-time extensions of process algebras have been proposed in theliterature; for an overview see [33]. Usually, timed process algebras are pro-vided with an operational interleaving semantics in the style of Plotkin that isbased on some notion of timed transition system. Notable exceptions are theworks on timed CSP by Reed & Roscoe [37] who de�ne a metric denotationalsemantics for time-guarded processes based on timed refusals, and, more re-cently, on real-time LOTOS by Bryans, Davies & Schneider [17] who use a(non-standard) �xed point semantics based on an advanced form of timed re-fusals in order to deal with divergence. Both works consider an interleavingsemantics.Timed extensions of partial-order models have received scant attention in theliterature. For example, extensions of con�gurations [30], prime event struc-tures [32], posets [21], and higher-dimensional automata [20] do exist, butthese models have not been used as a semantic model for a timed processalgebra and are merely of theoretical interest. Murphy [32] uses time trunca-tion | in a similar way as we do | as a basis for obtaining limiting in�niteobjects using ideal completions. Our approach resembles that of Fidge [18].Fidge proposes a real-time extension of causal trees, equivalence classes ofevent structures under history-preserving bisimulation, and uses this model toprovide a semantics to a timed variant of CCS. This approach has later beenextended to include time markers that facilitate the speci�cation of relativetime delays between arbitrary actions [19]. Katoen et al. [24] consider a timedvariant of bundle event structures (like in this paper), to provide a seman-tics for a real-time variant of LOTOS, in which a powerful urgency-operatoris incorporated. This approach requires a time-consistent setting (unlike thispaper), and uses a partial-order approach towards recursive behaviours,To the best of our knowledge, there are no other approaches that considerreal-time true concurrency in a metric setting.1.5 Organisation of the paperThe organisation of the paper is as follows. Section 2 introduces the real-time process algebra. Section 3 describes timed event structures and Section 4presents the semantical operators on these structures. The metric semantics isdeveloped in Section 5 which is the core part of the paper. Section 6 presentsthe operational interleaving semantics and investigates its consistency withthe metric semantics. Concluding remarks are provided in Section 7.A preliminary short version of this paper has been published as [5]; some other7

parts were contained in the dissertation [22].2 A real-time process algebraWe assume a given set of observable actions Obs and an invisible action � ;� 62 Obs. The actionp indicates the successful termination action of a process;p 62 Obs and p 6= � . Let IR+ denote the set of non-negative reals. In addition,let Act = Obs [f �;pg, a 2 Obs [f � g, I � IR+ [f1g, t 2 IR+ [f1g,A � Obs, � : Act �! Act with �(�) = � , �(p) = p and �(a) 6= p for a 2 Obs,and Var a set of process variables with x 2 Var. The set of expressions Expr isde�ned as follows:P ::= 0 j 1 j aI : P j P + P j P ; P j P [> P j P jjA P jP n A j P [�] j P �t P j x:The operators +, nA, and [�] are the usual process algebra operators choice,abstraction and relabelling, respectively.� 1 represents the successful termination process; it can only perform actionp and then becomes 0, the process that cannot perform any action.� aI : P denotes the pre�x of a and P where a is allowed (but not forced) tooccur at any time t 2 I. For I = [0;1) the usual untimed pre�x is obtained.� P ; Q denotes the sequential composition of P and Q; the control is passedto Q by the termination of P as indicated by the occurrence of p.� P [> Q denotes the disruption of P by Q; i.e. P may at any point of itsexecution be disrupted by Q, unless P has terminated.� P jjAQ denotes the parallel composition of P and Q; P and Q executeactions not in A independently from each other, while actions in A (andthe successful termination action) must be performed by both processessimultaneously.� P �t Q initially behaves like P , but if P does not perform an action beforetime t (since its enabling) then a timeout occurs and control is passed to Q.Using these operators a timed interrupt, for instance, can easily be modelled:the process P [> (0�tQ) speci�es that P is disrupted by Q at time t, unless Phas terminated before. Various case studies in the literature have proven thatthe timed operators like aI : P and P �t Q are convenient to specify practicalreal-time systems [4,41]. This shows the adequacy of the considered timedprocess algebra.Process variables are considered in the context of a set of process de�nitionsof the form x := P . Note that P might contain occurrences of x or of other8

process variables. For process variable x let decl(x) denote the body of x, i.e.decl(x) = P for x := P . A process is a pair hdecl; P i consisting of a declarationdecl : Var �! Expr and an expression P 2 Expr. Let PA denote the set of allprocesses.In order to avoid brackets we introduce the following precedence order of thecomposition operators, listed in decreasing binding order: aI : , +, jjA , [>, ; ,�t, nA and [�].3 Timed event structures3.1 The modelEvent structures consist of events labelled with actions (an event modellingthe occurrence of its action), together with relations of causality and con-
ict between events. We take Langerak's (extended bundle) event structures[26,27] and equip them with timing information. Event structures incorporatea con
ict relation (denoted ;) that | as opposed to what is common inother types of event structures | is not required to be symmetric, and a bun-dle relation (denoted 7!) for modelling causality. These two ingredients makebundle event structures suitable for providing a non-interleaving semantics toLOTOS [26,27].The meaning of e ; e0 is that (i) if e0 occurs it disables the occurrence ofe, and (ii) if e and e0 both occur in a single system run then e precedes e0.e ; e0 and e0 ; e is equivalent with e# e0, the usual symmetric con
ict inevent structures. As explained before, the reason for adopting ; rather than# is to model the disrupt operator [> adequately.Causality is represented by the bundle relation. For set X of events and anevent e, X 7! e means that if e happens in a system run, some event in Xmust have happened before. X is called the bundle-set and we use 7! to denotethe set of bundles of an event structure. Empty bundles are allowed; ? 7! emodels that e can never happen 4 . The reason for not having a binary causalityrelation between events (as in prime event structures [34]) is to model parallelcomposition jjA in a less complex way.Time is added to event structures in the following way [23]. Relative delays4 Events that are pointed to by empty bundles are comparable to self-con
ictingevents in
ow event structures [14], but | as opposed to self-con
icting events |they have the pleasant property that they can always be eliminated using transfor-mations [26,27]. The same applies to bundles like X 7! e with e 2 X.9

between events are attached to bundles, and delays relative to the start of thesystem are attached to events. The latter delays can be considered as absolutedelays. Delays determine when an event may happen, they do not specify thatan event should happen at a particular time. For the latter purpose we useurgent events; an urgent event should happen as soon as it is enabled.De�nition 1 (Timed event structure). A timed event structure (tes) E is atuple (E;;; 7!; l;A;R;U) with� E, a set of events,� ;� E � E, the (irre
exive) con
ict relation,� 7!� P(E)� E, the bundle relation,� l : E �! Act, the labelling function,� A : E �! P(IR+ [f1g), the event delay function,� R : 7! �! P(IR+ [f1g), the bundle delay function, and� U � f e 2 E j l(e) = � g, the set of urgent events,such that l;A and R are total functions and for any bundle-set X:(P1) (X �X) n IdE � ;and for all e 2 U :(P2) for all e0 2 E and bundle-set X((e0 ; e _ e; e0) ^ X 7! e)) (X 7! e0 _ X ; e0)(P3) there exists a time point t 2 IR+ such that(A(e) 2 f?; f t g g) _ (9X : X 7! e ^ R(X; e) 2 f?; f t g g):Here, P(�) denotes the power-set function, X ; e0 denotes (8 e00 2 X : e00 ;e0) and IdE denotes the identity relation on set E. Note that ?; e0 for all e0.If no confusion arises, timed event structures will be called simply event struc-tures throughout this paper. Event structures are depicted as follows. Eventsare denoted as dots; near the dot the action label is given. e; e0 is indicatedby a dotted arrow from e to e0; if also e0 ; e, then a dotted line is drawninstead. A bundle X 7! e is indicated by an arrow to which each event in Xis connected via a line. Bundle and event delays are depicted near to a bundleand event, respectively. Urgent events are denoted by open dots, other eventsby closed dots. A bundle X 7! e with R(X; e) = I is denoted by X I7! e.Delays [t;1) are simply denoted by t; delays [0;1) are usually omitted.Example 2 Figure 1(a) shows an example event structure with e.g. timedbundles f a g [0;7]7! b and f a g [0;5]7! c, and con
icts b; � and � ; b. The set ofurgent events U = f � g and the event delay A is 0 for all events.10

(a)a b c
� d[0; 7][4; 4][0; 5] (b)[2; 2]� � �e1 e2 e3[1; 1] [5; 5]Fig. 1. (a) An event structure and (b) a structure that violates (P2)The constraints (P1) through (P3) are justi�ed in the following.� Constraint (P1) requires all events in bundle set X to be in mutual con
ict.This enables us to uniquely de�ne a causal ordering between the events ina system run: if some event, e say, occurs in a system run, then it is foreach bundle X 7! e uniquely determined which event in X has caused e. Ifconstraint (P1) is omitted, several interpretations turn out to be plausiblewith di�erent characteristics [28]. The constraint is similar to the stabilityconstraint in stable event structures [40].� Constraint (P2) enforces that as soon as e is enabled either e0 is also enabled(provided e0 is not disabled in some way), or as soon as e0 occurs e will bepermanently disabled, since some bundle pointing to e is disabled by e0.Pictorially for the case e0 ; e:implies X XorXe0 e e0 e e0 e

The justi�cation for this constraint is to be able to \locally" decide whetheran event can occur by only considering its direct causal predecessors andcon
icts. This enables a more straightforward notion of timed event trace(see further on) and does not impose any restriction on the usage of themodel as semantics for our language. It forbids structures like Figure 1(b),where event e3 cannot occur, since the urgent event e1 | which is neitherin a direct causal nor con
ict relation with e3 | is forced to occur at time 1and subsequently the urgent event e2 must occur at time 3. That is to say, inorder to decide whether event e3 can occur initially, we have to consider theevent e1 which is not in a direct relation to e3. For the sake of conveniencewe like to avoid these situations. As we will see, such structures cannot bedescribed by the real-time process algebra of Section 2.� Constraint (P3) ensures that urgent events are enabled at a single timeinstant only, if ever. The motivation for this constraint is that urgent eventsare used for the sole purpose of modelling timeouts which are internal actionsof a process and typically can appear at a single time instant only.
11

3.2 The interpretation of event structuresThe concept of a system run for tes's is captured by the notion of a timedevent trace.De�nition 3 (Enabled events after �). For � a sequence of distinct events letthe set of events enabled in E after � be de�ned as 5enE(�) =df f e 2 E n � j (8 ei 2 � : e 6; ei) ^ (8X 7! e : X \ � 6= ?) g:Stated in words, an event is enabled after � if it is not disabled by one of theevents in �, and if for any bundle pointing to it some event appears in �.For events that have more than one bundle pointing to them we take thefollowing interpretation. Consider f a g I7! c and f b g J7! c. If a happens attime ta and b at time tb, then c is enabled at any t 2 (ta+I) \ (tb+J) where fort 2 IR and I � IR, t+I denotes f t+t0 j t0 2 I g. When the intersection of two(or more) sets of time instants is empty this means that (due to incompatibletime constraints) the event at hand cannot occur at any time and will bepermanently disabled.Let tmE�(e) denote the set of time instants at which an enabled event e after� could happen, given that each event ei in � occurred at time ti. Event ecan occur if (i) its absolute delay A(e) is respected, (ii) for each event ei withei ; e we have that e occurs at at least ti, and (iii) the time relative to allits immediate causal predecessors is respected. Cases (ii) and (iii) take careof the fact that events cannot occur before their causes, entailing that causalordering implies temporal ordering. So, we obtainDe�nition 4 (Potential time of occurrence). For � = (e1; t1) : : : (en; tn) atimed sequence of distinct events and event e 2 enE(�) lettmE�(e) =df A(e) \ \ei;e[ti;1) \ \X I7!e;ei2X ti+I:It is easy to check that for any urgent event e we have tmE�(e) = ? ortmE�(e) = f t g for some t 2 IR+, due to constraint (P3). In the latter casewe often identify tmE�(e) with t. Let �i denote the i-th pre�x of �, that is,�i = (e1; t1) : : : (ei; ti).De�nition 5 (Timed event trace). Sequence � = (e1; t1) : : : (en; tn) with ei 2E (all events being pairwise distinct) and ti 2 IR+, is a timed event trace of5 Often the set of events of a sequence is identi�ed with the sequence itself.12

E 2 TES i� for all 0 < i 6 n:(1) ej ; ei) j < i ^ tj 6 ti for all 0 < j 6 n(2) X I7! ei) (9 j : X\f e1; : : : ; ei�1 g = f ej g ^ ti 2 tj+I) for all X � E(3) ti 2 A(ei)(4) (ei ; e _ e; ei)) ti 6 tmE�i�1(e) for all e 2 U \ enE(�i�1). 6The set of timed event traces of E is denoted by Traces(E).The last constraint takes care of the fact that urgent events may prevent theevents that they disable (or by which they are disabled) to occur after a certaintime. That is, event ei can occur at time ti provided there is no enabled urgentevent e that disables ei (or that is disabled by ei) and that (if it occurs) mustoccur before ti.Example 6 For the following timed sequences of events the conditions aregiven under which they are timed event traces of Figure 1(a):(a; ta) (c; tc) (b; tb) if 0 6 ta ^ ta 6 tb 6 ta+4 ^ ta 6 tc 6 ta+4(a; ta) (�; t�) (d; td) if 0 6 ta 6 t� 6 td ^ t� = ta+4:Note that Figure 1(a) models a typical timeout scenario: if after the occurrenceof event a neither b nor c happen within 4 time units, then a timeout (event�) is forced to occur. It � would not be urgent, the upper bound conditions forta and tb in the �rst case would be tb 6 ta+7 and tc 6 ta+5, since � is wouldnot be forced to occur and time does not resolve the choice.Timed event traces do respect causality, but not necessarily the advanceof time. That is, two (or more) independent events can occur in a tracein either order regardless of their timing. For example, (a; 1)(b; 3)(c; 4) and(a; 1)(c; 4)(b; 3) are timed event traces of Figure 1(a). The choices correspondto the possible interleavings of the causally independent events. This situationis similar to the untimed case, where in a true concurrent setting, causally in-dependent events can occur in either order when considering event traces, lin-earisations of partial orders. Since the causal ordering between events impliestheir temporal ordering, the causal ordering can never contradict the temporalorder. Such traces are being referred to as \ill-timed but well-caused" [2].The following result implies that for any ill-timed event trace � there exists acorresponding time-consistent event trace �0, that can be obtained from � byswapping ill-timed pairs of timed events repeatedly.6 Here we use 6 on sets (singletons or empty sets). By convention we use t 6 ?.
13

Theorem 7 For all t0 < t and timed sequences of distinct events �; �0:� (e; t)(e0; t0) �0 2 Traces(E)) � (e0; t0)(e; t) �0 2 Traces(E)PROOF. Let �1 = � (e; t)(e0; t0) �0 2 Traces(E) and assume t0 < t. We provethe theorem by contradiction. Suppose �2 = � (e0; t0)(e; t) �0 62 Traces(E). Thiscan only be because one of the following reasons:(1) ej ; ei and (i) j > i or (ii) tj > ti. The interesting case is e ; e0. Thecase e0 ; e would contradict �1 2 Traces(E) since e occurs before e0 andin all other cases the order and timing of events is unchanged. Considere; e0. Since �1 2 Traces(E) then t 6 t0 which contradicts t0 < t.(2) X I7! ei and (i) X \ f e1; : : : ; ei�1 g = ? or (ii) ti 62 tj+I where j < i andej 2 X. By a similar reasoning as above, we conclude that the interestingcase is X 7! e0 with e 2 X. Since �1 2 Traces(E) then t0 2 t+I, so t0 > t,which contradicts t0 < t.(3) ti 62 A(ei). This would contradict with �1 2 Traces(E).(4) ti > tm�(ê) for some urgent event ê enabled after � = (e1; t1) : : : (ei�1; ti�1),a pre�x of �2, such that (i) ei ; ê or (ii) ê; ei. The interesting cases are(1) ei = e and (2) ei = e0; the other cases lead directly to a contradictionwith �1 2 Traces(E).(i1) ei ; ê and ei = e. So, � = �(e0; t0). For ê = e0 we have e ; e0 whichwould lead to a contradiction, see case (1) above. Assume ê 6= e0. Incase ê would be enabled after �, it follows from �1 2 Traces(E) thatti 6 tm�(ê), and a contradiction follows. Otherwise, the enabling of ênecessarily depends on e0, i.e. X 7! ê and e0 2 X. (In case e0 ; ê,ê would be enabled after �.) But then, since e ; ê, it follows fromcondition (P2) that either X 7! e or X ; e. Both cases contradictwith �1 2 Traces(E), since e0 occurs after e in �1 and this would not bepossible if X 7! e or e0 ; e, given that e0 occurs in �1.(i2) ei ; ê and ei = e0. So, � = �. As for case (i1), assume ê 6= e. From�1 2 Traces(E) it follows that t 6 tm�(ê). Since t0 < t, it followst0 6 tm�(ê). Contradiction.(ii1) ê; ei and ei = e. So, � = �(e0; t0). Similar to case (i1).(ii2) ê; ei and ei = e0. So, � = �. Similar to case (i2).Note that the reverse implication does not hold; for instance, if e causallydepends on e0 then the order of events e0 e in a trace cannot be reversed sincethis would contradict their causal ordering.This result can be interpreted as follows: the set of timed event traces obtainedfrom a timed event structure can be partitioned in equivalence classes, whereeach equivalence class consists of traces containing identical elements (i.e. pairs14

of events and time points). An equivalence class does not distinguish amongtotal order executions that are equivalent up to the reordering of independentevents. This leads to a more abstract representation of concurrency than timedevent traces, and is similar to the treatment of traces by Mazurkiewicz [31].4 Operators for timed event structuresIn this section we present some operators on timed event structures that areneeded to de�ne a compositional semantics for PA. They are basically adoptedfrom [22,23]. We start with some basic notions. Let Events be a set suchthat for any event e 2 Events, (e; �); (�; e) 2 Events, and if e; e0 2 Eventsthen (e; e0) 2 Events. Let TES denote the set of tes's E with E � Events.Let init(E) be the set of initial events of E and exit(E) its set of successfultermination events, i.e. init(E) =df f e 2 E j : (9X � E : X 7! e) g andexit(E) =df f e 2 E j l(e) = pg.In the rest of this section let E; E1; E2 2 TES and E1 = (E1;;1; 7!1; l1;A1;R1;U1), E2 = (E2;;2; 7!2; l2;A2;R2;U2) such that w.l.o.g. E1 \ E2 = ?. Let �̂denote the urgent variant of � .De�nition 8 (Action-pre�x). For a 2 Obs [f �; �̂ g and I � [0;1) letaI : E1 =df (E1 [f ea g;;1; 7!; l1 [f (ea; a) g;A;R;U) where� 7!= 7!1 [(f f ea g g � E1)� A = f (ea; I) g [(E1 � f [0;1) g)� R = R1 [f ((f ea g; e);A1(e)) j e 2 E1 g� U = if a = �̂ then U1 [f ea g else U1where we assume that ea 62 E1.�̂I : E denotes the pre�xing of �I and E where e is declared to be urgent. Thepossibility �̂I : E is used to de�ne the semantics of the timeout operator � ina concise way. Notice that for �̂I : E set I must be either empty or be a pointinterval in order to guarantee constraint (P3).In aI : E a bundle is introduced from a new event ea (labelled a) to all eventsin E. The delay of each of these events becomes relative to ea, so for everysuch event e each bundle f ea g 7! e is associated with a delay A(e), andA(e) becomes [0;1). A(ea) becomes I. In the untimed case it su�ces to onlyintroduce bundles from ea to the initial events of E, cf. [26,27]. The bundlesto all events of E that are introduced in the timed case are used for the sole
15

purpose of making delays relative to ea. As an example of pre�xing consider 7 :c 29 f4[7; 12]
[4; 25]1 ba[2; 3] gb c1 4 [7; 12] 29 [4; 25]fg:a[2;3] =

De�nition 9 (Choice).E1 + E2 =df (E1 [E2;;; 7!1 [7!2; l1 [l2;A1 [A2;R1 [R2;U1 [U2)where ;=;1 [;2 [(init(E1)� init(E2)) [(init(E2)� init(E1)).For choice consider the following example. Since the timings of events andbundles are una�ected we omit these for convenience.=a� acb�c+ b � �For E1 �t E2 a new internal urgent event e with delay f t g is introduced thatmodels the expiration of the timer. Since either the timer expires or E1 per-forms an initial event before (or at) t, event e is put in mutual con
ict withall initial events of E1, like for choice.De�nition 10 (Timeout). For t 2 [0;1) let E1 �t E2 =df E1 + �̂f t g : E2.As an example of the timeout operator consider:
[6; 21) d3 [2; 10] [27; 41] = [6; 21) a 52 [2; 10][27; 41][12; 12]�12 3�2 5 g b gdca b c

De�nition 11 (Abstraction). For A � Obs let EnA =df (E;;; 7!; l0;A;R;U)where (l(e) 2 A) l0(e) = �) ^ (l(e) 62 A) l0(e) = l(e)):7 Recall that [t;1) is simply denoted by t.16

De�nition 12 (Relabelling). For � : Act �! Act with �(�) = � and �(p) =p let E [�] =df (E;;; 7!; �� l;A;R;U), where � denotes function composition.De�nition 13 (Sequential composition).E1 ; E2 =df (E1 [E2;;; 7!; l;A;R;U1 [U2) where� ;=;1 [;2 [(exit(E1)� exit(E1)) n IdE1� 7!= 7!1 [7!2 [(f exit(E1) g � E2))� l = ((l1 [l2) n (exit(E1)� fpg)) [(exit(E1)� f � g)� A = A1 [(E2 � f [0;1) g)� R = R1 [R2 [f ((exit(E1); e);A2(e)) j e 2 E2) g.Bundles are introduced between the successful termination events of E1 andthe events in E2. In order to create bundles, mutual con
icts are introducedbetween the successful termination events of E1. The successful terminationevents of E1 are relabelled into internal events. The reason for introducingbundles to all events (and not only the initial ones) of E2 is to make eventdelays in E2 relative to the termination of E1. This is similar as for action-pre�x. As an example of how E1 ; E2 is computed consider:= 1 1 18a ab cd3 [2; 3]1 1 18[2; 3]a ab cd3 p ��p ;De�nition 14 (Disrupt).E1 [> E2 =df (E1 [E2;;; 7!1 [7!2; l1 [l2;A1 [A2;R1 [R2;U1 [U2)where ;=;1 [;2 [(E1 � init(E2)) [(init(E2)� exit(E1)):E1 [> E2 is equal to the union of E1 with E2 extended with some con
icts.Each event in E1 may be disabled by an initial event of E2. This models thefact that E1 is disrupted once an initial event of E2 happens. In addition, afterthe occurrence of a successful termination event in E1 no initial event of E2can happen anymore. As an example of how E1 [> E2 is computed considerthe following. Like for the example of choice, the bundle and event delays areomitted since they are una�ected by [>.a b p c a b pc[> =
17

The de�nition of parallel composition is a bit more involved. The events ofE1 jjA E2 are constructed in the following way: an event e of Ei (i=1; 2) thatdoes not need to synchronise is paired with the auxiliary symbol �, and anevent which is labelled with p or with an action in A is paired with all events(if any) in the other tes that are equally labelled. Two events are put in con
ictif any of their components are in con
ict, or if di�erent events have a commoncomponent di�erent from � (such events appear if two or more events in onetes synchronise with the same event in the other tes). For each event (e1; e2)in the parallel composition, the bundles X 7! (e1; e2) are obtained by the\lifting" of the bundles Xi 7!i ei of the components E i. Let for A � Obs,Esi =df f e 2 Ei j li(e) 2 A [fpg g be the set of synchronising events andEfi =df Ei n Esi the set of `free' events.De�nition 15 (Parallel composition). For A � Obs letE1 jjA E2 =df (E;;; 7!; l;A;R;U) where� E = (Ef1 � f� g) [(f � g � Ef2) [f (e1; e2) 2 Es1 � Es2 j l1(e1) = l2(e2) g� (e1; e2) ; (e01; e02) i�� (e1 ;1 e01) _ (e2 ;2 e02) or� (e1 = e01 6= � ^ e2 6= e02) _ (e2 = e02 6= � ^ e1 6= e01)� X 7! (e1; e2) i�� (9X1 : X1 7!1 e1 ^ X = f (e; e0) 2 E j e 2 X1 g) or� (9X2 : X2 7!2 e2 ^ X = f (ê; ê0) 2 E j ê0 2 X2 g)� l(e1; e2) = if e1 = � then l2(e2) else l1(e1)� A(e1; e2) = A1(e1) \ A2(e2) with Ai(�) = [0;1):� R(X; (e1; e2)) = TX12S1 R1(X1; e1) \ TX22S2 R2(X2; e2) with� S1 = fX1 � E1 j X1 7!1 e1 ^ X = f (e; e0) 2 E j e 2 X1 g g and� S2 = fX2 � E2 j X2 7!2 e2 ^ X = f (ê; ê0) 2 E j ê0 2 X2 g g� (e1; e2) 2 U i� e1 2 U1 _ e2 2 U2 with � 62 Ui:Example 16 In the �rst example of parallel composition the timings of eventsand bundles are una�ected and are omitted for convenience.= a ccb (e2; �)(�; e01) (�; e02)a ce1 e2 ce01 e02b (e1; �)jj?
Synchronisation leads to pairing of events, and intersection of the event delays

18

of its components, cf. a
(�; e01)jjc c3[7; 12](e1; �) (e2; e02)=e01 e023b c [1; 5]a [7; 12]e1 ce2 2 [2; 5]bIntersection of bundle delays is illustrated by the following example where theleft-hand tes is composed with the empty event structure:

ab e1 be2e3 [0; 1][12 ; 3] =jja (e1; �) (e2; �)bb [12 ; 1]
In Section 3 we motivated the use of bundles for modelling parallel compositionin a rather intuitive way. Due to the impossibility to have di�erent (con
ict-ing) causes for a single event, the de�nition of parallel composition on primeevent structures is much more involved [29,39]. For
ow event structures, thede�nition of parallel composition poses some technical problems that can besolved by imposing additional structural constraints on the event structures[15].We can now establish the following closure result:Theorem 17 TES is closed under aI : ;+; nA, [�]; ; ; [>; jjA , and �t.PROOF. Let E1; E2 2 TES. We provide the proofs for [> and jjA ; the proofsfor the other constructs are similar (and simpler). We concentrate our proofon the constraints (P2) and (P3) of De�nition 1. The proofs for irre
exivityof ; and (P1) follow directly from [26] and are omitted here. The fact thaturgent events are internal is easy to check and omitted.(1) E = E1 [> E2. The proof of (P3) is easy since the event and bundle delaysare una�ected by [> and no urgent events are introduced by it. Considerconstraint (P2). Let e 2 U .(i) Assume e0 ; e and X 7! e. If e0 ;1 e or e0 ;2 e then the validity of(P2) follows directly from E1; E2 2 TES. Consider e0 6;1 e and e0 6;2 e.From De�nition 14 it follows that we have to consider the cases e0 2 E1and e 2 init(E2), and e0 2 init(E2) and e 2 exit(E1). For the latter(P2) follows, since e 2 exit(E1) contradicts the assumption e 2 U whileurgent events are internal. For the former case (P2) also follows, sincee 2 init(E2) contradicts the assumption X 7! e.19

(ii) Assume e ; e0 and X 7! e. Like for (i) consider e 6;1 e0 and e 6;2 e0.Consider (the symmetric cases of (i)) e 2 E1 and e0 2 init(E2), ande 2 init(E2) and e0 2 exit(E1). The latter case is straightforward sincee 2 init(E2) contradicts X 7! e. Consider the former case. From theassumption X 7! e and De�nition 14 it follows X 7!1 e. Since E1 2TES and the fact that e0 is initial we have X ;1 e0 for X � E1, andconsequently X ; e0.(2) E = E1 jjA E2. Let e = (e1; e2) 2 U . Since urgent events are internal wehave e1 = � and e2 2 E2, or the reverse. By symmetry it su�ces toconsider e.g. e = (�; e2) with e2 2 E2.(P2) Let X 7! e. The cases e ; e0 and e0 ; e are proven in a similarway. We consider e0 ; e. Let e0 = (e01; e02). From (e01; e02) ; (�; e2) andDe�nition 15 it follows that e02 ;2 e2. In addition, since e = (�; e2) wehave X = f (e001; e002) 2 E j e002 2 X2 g where X2 7!2 e2. Since E2 2 TES itfollows X2 7!2 e02 or X2 ;2 e02, and by De�nition 15, X 7! e0 or X ; e0.(P3) Since E2 2 TES we have that A2(e2) � [t; t] or X2 I7!2 e2 with I �[t; t] for some t. For the former case the validity of (P3) follows sinceA(�; e2) = [0;1) \ A2(e2) = A2(e2). For the second case, it followsfrom De�nition 15 that there is a bundle X 7! e with delay R(X; e) �R2(X2; e2) and thus (P3) is satis�ed.5 A metric denotational semanticsIn this section we provide a metric denotational semantics for our processalgebra. In Section 5.1 we summarise the main ingredients of metric spacesthat are needed for the understanding of the rest of this paper. The use ofmetric spaces for denotational semantics is summarised in Section 5.2. Readersfamiliar with these topics might want to skip these sections. The basis for anappropriate distance notion is time truncation as described in Section 5.3.Section 5.4 de�nes a complete ultra-metric space based on time truncation.Time-guardedness is de�ned in Section 5.5 and a semantics for time-guardedspeci�cations is provided in Section 5.65.1 A resum�e of metric spacesA more thorough treatment of metric spaces can be found in, for instance,[16].De�nition 18 (Metric space). For set A and d : A�A �! IR, the pair hA; di
20

is a metric space if for all x and y 2 A:(1) d(x; y) > 0(2) d(x; y) = 0 , x = y(3) d(x; z) 6 d(x; y) + d(y; z) for all z 2 AhA; di is called an ultra-metric space if constraint (3) is replaced by (thestronger) constraint d(x; z) 6 max(d(x; y); d(y; z)). If constraint (2) is weak-ened into d(x; y) = 0 (x = y, then the pair hA; di is called a pseudo-metricspace.In this paper we consider one-bounded distance functions, i.e. d(x; y) 6 1 forall x; y 2 A. We will also basically deal with ultra-metric spaces, which isquite natural when the distance function corresponds to the reciprocal of thenumber of computation steps two processes coincide.We assume that hA� A; d0i is equipped with the distanced0((x; y); (x0; y0)) = maxf d(x; x0); d(y; y0) gfor x; x0; y; y0 2 A.If (xn) is a sequence in hA; di and x 2 A then x is called the limit of (xn) i�8 " > 0 : (9N 2 IN : 8n > N : d(xn; x) < "):hA; di is a complete metric space (cms) if each Cauchy sequence has a limit,where a Cauchy sequence is a sequence (xn), xi 2 A, such that8 " > 0 : (9N 2 IN : 8m;n > N : d(xm; xn) < "):De�nition 19 (Contracting). For hA; di a metric space, function f : A �! Ais contracting if there exists a real number c 2 [0; 1) such that8 x; y 2 A : d(f(x); f(y)) 6 c � d(x; y):In that case, c is called a contraction coe�cient of f . Function f is callednon-distance increasing or non-expansive i�8 x; y 2 A : d(f(x); f(y)) 6 d(x; y):Banach's �xed point theorem now says that for each contracting function ona cms there exists a unique �xed point.Theorem 20 (Banach's �xed point theorem). For hA; di with A 6= ? a com-21

plete metric space and f : A �! A a contracting function on hA; di we have(1) f has a unique �xed point, say x, and(2) any sequence (xn) such that xi+1 = f(xi) has limit x.5.2 Denotational semanticsWe only give a brief account of our approach; see [35,10,6,11] for more infor-mation on the use of metrics for denotational semantics. The semantic domainS | in our case a suitable variant of TES | for PA is equipped with a set Op0of operators that re
ect the operators Op of Expr. For any �xed declarationdecl, the function P 7! M(decl; P) for P 2 Expr is a homomorphism from(Expr;Op) to (S;Op0) such that the meaning of process variable x is givenby decl(x). The requirement of being a homomorphism is an algebraic char-acterisation of the fact that M is compositional, that is, the meaning of acomposed program op(P1; : : : ; Pn) with op 2 Op can be obtained by applyingthe corresponding semantic operator op0 2 Op0 to the meaningsM(Pi) of themodules Pi, shortlyM(decl; op(P1; : : : ; Pn)) = op0(M(decl; P1); : : : ;M(decl; Pn)):Function M satis�es these conditions i�, for any �xed declaration decl, thefunction P 7! M(decl; P) is a �xed point of the higher-order function Fdecl :[Expr �! S] �! [Expr �! S], de�ned (in our case) by:Fdecl(�)(0) =df 00Fdecl(�)(1) =df 10Fdecl(�)(x) =df �(decl(x))Fdecl(�)(op P) =df op0 Fdecl(�)(P) for unary opFdecl(�)(P op Q) =df Fdecl(�)(P) op0 Fdecl(�)(Q) for binary op:By Banach's �xpoint theorem, Fdecl has a unique �xed point, provided thatFdecl is contracting with respect to a distance function ~d where h[Expr �!S]; ~di is a cms. Distance ~d is obtained from the cms hS; di where~d(�1; �2) =df supf d(�1(P); �2(P)) j P 2 Expr g (1)for �1; �2 : Expr �! S. Function Fdecl is contracting on h[Expr �! S]; ~di ifits constituents ; , �t, jjA and so on, are non-distance increasing on hS; diand contracting in certain arguments [6,12]. Our �rst concern is to �nd an22

appropriate function d on the semantical domain S, in our case TES. Thesemantics of PA is then obtained by M(decl; P) =df �decl(P), where �decl :Expr �! S is the unique �xed point of Fdecl .5.3 Time truncationThe basis of our distance function d is time truncation. The minimal time atwhich e can occur in E is de�ned bymintimeE(e) =df inf f t 2 IR+ j 9 � 2 Traces(E) : (e; t) 2 � gwhere by convention inf ? =df 1. For t 2 IR+ and X � E let X � t =df f e 2X j mintimeE(e) < t g, the set of events in X that can occur strictly beforet. Notice that X � 0 = ? for any X. Let X � 1 =df St>0 X � t, i.e. X � 1is the set of events that can occur. Event e is called executable i� e 2 E �1,i.e. if mintimeE(e) <1.De�nition 21 (Time truncation). The truncation of E up to t 2 IR+ [f1gis de�ned by E � t =df (E � t;;t; 7!t; lt;At;Rt;U t) where lt = l � (E � t),At(e) = A(e) \ [0; t), U t = U � t, and� ;t =; \ (E � t� E � t)� X 7!t e i� there exists Y 7! e with Y � t = X� Rt(X; e) is the set of all time points u 2 [0; t[such that there is some timedevent trace (e1; t1)(e2; t2) : : : (en; tn) for which the following conditions hold:� tn < t and en = e� there is some j < n with ej 2 X and u = tn�tj.Remark that E � 0 is the empty tes. By straightforward proof one can establishthatLemma 22 TES is closed under time truncation.Lemma 23 8 t > 0 : E � t = (E �1) � t.Example 24 Time truncation is illustrated by Figure 2. It depicts (a) a tesE and (b) its truncation E � 6 up to time 6. Events b; f and g are eliminatedin E � 6, since the minimal time at which they can occur, time 11, 8 and6, respectively, is at least 6. Note that f a g [1;3]7! 6 c, since the minimal delaybetween events a and c is 1 ([1;1) \ [0; 9] = [1; 9] since f a; b g 17! c andf a g [0;9]7! c), whereas the maximal delay is at most 3 time units (in the scenarioin which a happens at time 3, and c should happen before 6). In a similar way,we obtain f c g [1;2)7! d. 23

[0; 9]1 1 1 1[4; 25](a) g [3; 6) [1; 2)(b) da311b c d 3 f a [1; 3)c [0; 6) [4; 6)Fig. 2. Time truncationThe idea of time truncation is that by enlarging the time span during which anevent structure is considered, we obtain more information about its behaviour.In the limit, that is for an in�nite time span, we would expect to capturethe entire behaviour of the event structure. The next theorem says that thebehaviour of E can indeed be approximated by its time truncations. In orderto pave the way towards its proof we provide the following lemmata.Lemma 25 For � = (e1; t1) : : : (en; tn) 2 Traces(E) such that ti < t for all0 < i 6 n: enE(e1 : : : en) � t = enE�t(e1 : : : en):PROOF. By checking inclusion in both directions.(i) `�': let e 2 enE(e1 : : : en) � t. Then e 6; ei, for 0 < i 6 n, and by De�nition21 it follows e 6;t ei. If there is no bundle in E � t pointing to e, thenwe yield e 2 enE�t(e1 : : : en). Suppose that X 7!t e. Then, according toDe�nition 21, Y 7! e for some Y with Y � t = X. Since ti < t for 0 < i 6 n,we have that (X \ f e1; : : : ; en g 6= ?) , (Y \ f e1; : : : ; en g 6= ?), and e 2enE�t(e1 : : : en).(ii) `�': let e 2 enE�t(e1 : : : en). Then e 6;t ei, for 0 < i 6 n, and by De�nition21 it follows that e 6; ei. If there is no bundle in E pointing to e then theproperty follows directly. Suppose X 7! e. Then, by De�nition 21, X � t 7!te. But then, (X \ f e1; : : : ; en g 6= ?) , ((X � t) \ f e1; : : : ; en g 6= ?) sinceti < t for 0 < i 6 n, and e 2 enE(e1 : : : en) � t.From the de�nition of time truncation and the previous lemma, it is not dif-�cult to show that:Theorem 26 Traces(E) = St>0 Traces(E � t).
24

5.4 A complete ultra-metric spaceThe idea is to use time truncation as a basis for de�ning a distance d onTES. In particular, the distance between two tes's will be determined by themaximum amount of time they \agree", that is:d(E1; E2) =df inf f 2�t j E1 � t = E2 � t g: (2)Remark that E � 0 is the empty tes, so each pair of tes's agrees at leastup to time 0. Also notice that d(E; E � t) 6 2�t for all t. Although thisbasic notion of distance is rather intuitive, it is, unfortunately, too naive. Theproblem is that some distinct tes's cannot be distinguished according to d.This means that d is a pseudo-metric rather than a metric. For instance,the tes consisting of a single event e with an empty bundle pointing to eis indistinguishable from the empty tes, since their time truncations are allempty. That is, according to (2) their distance is 0. The problem is thattes's may contain events that can never appear. This is due, for example,to empty bundles, circular bundles, or inconsistent timing constraints. Suchevents can, for instance, appear in the semantics for expressions like 0 jja a : 0,a : b : 0 jjfa;b g b : a : 0, or when timing constraints are speci�ed that avoid certainactions from happening, like in a2 : 0�1 b : 0 where a will never happen. Suchevents can be removed by applying the transformations exposed in [27,22]that preserve timed event traces, but it is hard to adapt the de�nitions ofthe operators on event structures such that these events are eliminated duringconstruction.A solution to this problem is to impose an equivalence relation, ' say, on TES,while aiming at d(E1; E2) = 0 , E1 ' E2: Stated in other words, where d isthe equivalent of d on TES=' and Ei denotes the equivalence class of E i under', we aim at d(E1;E2) = 0 , E1 = E2: In order to obtain ', the examplessuggest to abstract from events that can never be executed. This motivatesthe use of restrictions of E to its set E �1 of executable events. In the aboveexample with ? 7! e it would mean that event e is not considered. The idea ofthose restrictions is that executable events are una�ected. This follows from:Lemma 27 Traces(E �1) = Traces(E).PROOF.Traces(E �1)= f Theorem 26 gSt>0 Traces((E �1) � t)= f Lemma 23 g 25

St>0 Traces(E � t)= f Theorem 26 gTraces(E):The equivalence ' intended above is now de�ned by E1 ' E2 if and only ifE1 �1 = E2 �1.It is quite standard to abstract from event identities in metric semantics [11,29],i.e. to deal with isomorphism classes of semantic structures. The event iden-tities are only needed for technical reasons but they are meaningless for thesemantics of an expression. The following de�nition is the usual notion ofisomorphism with the only exception that the bijection is de�ned over theexecutable events.De�nition 28 (Isomorphism). Tes's E i = (Ei;;i; 7!i; li;Ai;Ri;U i) for i=1; 2are isomorphic if there exists a bijection f : E1 �! E2 such that l2 � f = l1,A2 � f = A1 and(1) e1 ;1 e2 i� f(e1);2 f(e2) for all e1; e2 2 E1,(2) X I7!1 e i� f(X) I7!2 f(e) for all e 2 E1; X � E1, and(3) e 2 U1 �1 i� f(e) 2 U2.E1 and E2 are called timed isomorphic, denoted E1 'iso E2, i� the tes's E1 �1and E2 �1 are isomorphic.Note that E 'iso E � 1. We write f : E1 �! E2 to denote that f is anisomorphism from E1 to E2. For E 2 TES let EE denote the equivalence class ofE under 'iso . For E 2 TES='iso let E � t =df EE�t, where E is a representativeof E. The distance between equivalence classes (under 'iso) of tes's is givenby: d(E1;E2) =df inf f 2�t j E1 � t = E2 � t g: (3)Recall that d(E;E � t) 6 2�t for all t > 0.In order to motivate the next step towards (isomorphism classes of) �niteapproximable timed event structures consider the following example.Example 29 Let E i = (Ei;?; 7!i; Ei � f a g;Ai;Ri;?), for i=1; 2 where� E1 = f (k; j) j j > 1 ^ 0 < k 6 j g and E2 = E1 [f (k; 0) j k > 1 g� f (k; j) g 7!i (k+1; j) for 0 < k < j and f (k; 0) g 7!2 (k+1; 0) for k > 1� Ai(k; j) = [k; k] for all (k; j) 2 Ei, and26

� Ri(f (k; j) g; (k+1; j)) = [1; 1].E1 and E2 are depicted in Figure 3(a) and (b), respectively. For simplicity,event labels, bundle delays and event identi�ers are omitted. Then, E1 6'iso E2[1; 1][1; 1] [2; 2][1; 1] [2; 2] [3; 3][1; 1] [2; 2] [3; 3] [4; 4].
[1; 1][1; 1] [2; 2][1; 1] [2; 2] [3; 3][1; 1] [2; 2] [3; 3] [4; 4].(a) (b)

[1; 1] [2; 2] [3; 3] [4; 4]

Fig. 3. Two non-isomorphic tes's for which all timed truncations are isomorphicwhile E1 � t 'iso E2 � t for all t > 0. If we now would de�ne d as suggested in(3) on TES='iso then d(E1;E2) = 0, although E1 and E2 are not isomorphic,thus yielding a pseudo-metric.The problem with this example is that both tes's allow an in�nite numberof events to occur in a �nite amount of time. This is avoided by considering�nitely approximable tes's, a timed analogon of approximable event structures[29]. Note that this is not a real restriction, since for timed systems it is quitenatural to avoid the execution of an in�nite number of events in a �nite timespan (so called Zeno behaviours) [3,33].De�nition 30 (Finite approximable). E is called �nitely approximable i� E �t is �nite for all t 2 IR+.Let TES�n='iso denote the isomorphism classes of �nitely approximable tes's.Lemma 31 hTES�n='iso ;di is an ultra-metric space.PROOF. It is straightforward to check that d is a pseudo-ultra-metric onTES�n='iso . We, therefore, concentrate on showing that d(E;E0) = 0) E =E0. Let E, E0 2 TES�n='iso such that d(E;E0) = 0 and let E = (E;;; 7!; l;A;R;U), E 0 = (E 0;;0; 7!0; l0;A0;R0;U 0) be representatives of E and E0,respectively. The proof obligation is E 'iso E 0. (Then it follows, E = E0.)Since d(E;E0) = 0 it follows from the de�nition of d that E � t and E0 � tcoincide for all t. The proof technique for showing E = E0 is to use the thus
27

existing isomorphisms between E � t and E 0 � t to construct an isomorphismbetween E and E 0.Let (tn)n>0 be a strictly monotonic sequence of non-negative reals with t0 = 0and sup(tn) = 1. Let fn : E � tn �! E 0 � tn be an isomorphism. (Fromthe above it follows that such isomorphism exists.) Clearly, mintimeE(e) =mintimeE 0(fk(e)) for all executable events e in E . Moreover, for any event ein E � t and any time point t, we have mintimeE(e) = mintimeE�t(e). (Andthe corresponding result for E 0.) This yields the following. If e 2 E � tnthen fk(e) 2 E 0 � tn for all k � n. We now de�ne for k > n, functionshk;n : E � tn �! E 0 � tn by hk;n(e) = fk(e).The idea is to de�ne (by induction on n > 0) isomorphisms gn : E � tn �!E 0 � tn and in�nite sets In of natural numbers such that(1) I0 � I1 � I2 � : : : and(2) gn = hk;n(= fk) for all k 2 In.Base case: let g0 be the empty function and I0 = fn j n > 0 g.Induction step: let n > 1 and assume gk and Ik have been de�ned for all0 6 k < n. Since E � tn and E 0 � tn are �nite, the set of all functions fromE � tn to E 0 � tn is �nite. As In�1 is in�nite and the set of all functions fromE � tn to E 0 � tn is �nite, there exists some function gn : E � tn �! E 0 � tnand some in�nite subset In of In�1 with gn = hk;n for all k 2 In.This completes the de�nition of gn and In for n > 0. Let function f : E �1 �! E 0 � 1 be de�ned as follows: for event e 2 E with mintimeE(e) = tand tn > t, let f(e) = gn(e). (Note that, if k > n and tn > t then gk(e) = gn(e)for all e 2 E � t.) We now show that f is an isomorphism E �! E 0. Fromthe construction of f in terms of the isomorphisms gn, it follows that f is abijection with l = l0 � f , A = A0 � f , e 2 U i� f(e) 2 U 0 and� e; e0 i� f(e);0 f(e0),� mintimeE(e) = mintimeE 0(f(e)), and� f(X) � tn = gn(X � tn) for all n > 0.It remains to consider the bundle relations. Let 7!n (Rn) and 7!0n (R0n) be thebundle relation (the bundle delay functions) of E � tn and E 0 � tn, respectively.Let e 2 E, n0 a natural number with tn0 > mintimeE(e) and assume X 7! e isa bundle in E �1 with R1(X; e) = I. By De�nition 21 it follows X � tn 7!n efor all n > n0 where SRn(X � tn; e) = R1(X; e) = I. Since gn : E � tn �!E 0 � tn is an isomorphism, it followsf(X) � tn = gn(X � tn) 7!0n gn(e) = f(e)
28

and R0n(f(X) � tn; f(e)) = R0n(gn(X � tn); gn(e)) = Rn(X � tn; e) for alln > n0. Thus, f(X) I7! 0f(e). In a similar way, we can show that f(X) I7! 0f(e)implies X I7! e.This proves that f is an isomorphism from E1 to E2, and consequently, thatE1 'iso E2. Hence, E1 = E2.The main result that we need in order to de�ne the metric semantics for PAas the unique �xed point of some higher-order function is completeness of themetric space that is considered.Theorem 32 The ultra-metric space hTES�n='iso ;di is complete.PROOF. We show that each Cauchy sequence has a limit in TES�n='iso inthe following way. Given an arbitrary Cauchy sequence (En): (i) we provide arecipe on how to construct a structure F that is (ii) a member of TES, is (iii)�nitely approximable, and (iv) for which d(En;EF) 6 2�n for all n > 1.We start with some preliminaries. Let (En) be a Cauchy sequence in TES�n='iso .Assume that d(En;Ek) 6 1=2n for all k > n > 1. 8 Let En = (En;;n; 7!n; ln;An;Rn;Un) be a representative of En and, for k > n > 1, fn;k : En �n �! Ek � n an isomorphism. Let En � n = (En � n;;0n; 7!0n; l0n;A0n;R0n;U 0n).We assume w.l.o.g. En \ Ek = ? if n 6= k. Let E = Sn>1En � n, and let �be the smallest equivalence relation on E that identi�es e and fn;k(e) for alle 2 En � n and k > n. Let F = E= � and gn : En � n �! F the canonicalfunction that assigns to each e 2 En � n its equivalence class under �, [e]�,that is f e; fn;n(e); fn;n+1(e); fn;n+2(e); : : : g. For f 2 F we de�nerank(f) =df minfn > 1 j 9 e 2 En � n : f = gn(e) g:Stated in words, the rank of f is the minimal time instant such that f is theimage of some event e under gn. Let Fn = f f 2 F j rank(f) 6 n g, and forrank(f) 6 n, let �n(f) be the unique element in En � n with gn(�n(f)) = f(the `generator' of [e]�). Then,� �n(gn(e)) = e for all e 2 En � n,� fn;k(�n(f)) = �k(f) for all k > n > 1 and f 2 Fn,� l0k(�k(f)) = l0k(fn;k(�n(f)) = l0n(�n(f)) for all k > n > 1 and f 2 Fn,� A0k(�k(f)) � A0n(�n(f)) for all k > n > 1 and f 2 Fn,8 From the theory of metric spaces [16] it is known that for any Cauchy sequence(En) there exists a subsequence (Ein) with d(Ein ;Eik) 6 1=2n for all k > n > 1.Moreover, the limit of (En) (if any) is identical to the limit of (Ein).29

� �n(f);0n �n(f 0) i� �k(f);0k �k(f 0) for all k > n > 1 and f , f 0 2 Fn.For Y � F let �n(Y) = f e 2 En � n j gn(e) 2 Y g. Clearly, �n(Y) =�n(Y \ Fn) for all Y � F .(i) We de�ne F = (F;;; 7!; l;A;R;U) as follows.� f ; f 0 i� �n(f);0n �n(f 0) for all n > maxfrank(f); rank(f 0)g,� Y 7! f i�, for each n > rank(f), �n(Y) 7!0n �n(f) is a bundle in En � n,� l(f) = l0n(�n(f)) for all n > rank(f),� A(f) = Sn>rank(f) A0n(�n(f)),� R(Y; f) = Sn>rank(f)R0n(�n(Y); �n(f)) for Y 7! f� U = Sn>1f gn(e) j e 2 U 0n g.Clearly, if �k(Y) 7!0k �k(f) and rank(f) 6 n < k then�n(Y) = f�1n;k(�k(Y) � n) 7!0n f�1n;k(�k(f)) = �n(f)and R0n(�n(Y); �n(f)) � R0k(�k(Y); �k(f)). Thus, Y 7! f i� �n(Y) 7!0n�n(f) for in�nitely many n > rank(f) andR(Y; f) = [i>1R0ni(�ni(Y); �ni(f))for each sequence n1 < n2 < : : :.(ii) We now prove that F 2 TES. It is easy to see that F satis�es constraint(P1) of De�nition 1 and that ; as de�ned under (i) is irre
exive.(P2) Let Y 7! f be a bundle in F , f 2 U and either f ; f 0 or f 0 ; f . If�n(Y);n �n(f 0) in En for all n > rank(f 0) then by the construction in (i),Y ; f 0, and (P2) is satis�ed. Otherwise there is some n0 > rank(f 0) andsome e 2 �n0(Y) with e 6;n0 �n0(f 0). For all n > n0, fn0;n(e) 2 �n(Y) andfn0;n(e) 6;n �n(f 0) (y). For each n > n0, we choose a bundle Xn 7!n �n(f)in En with Xn � n = �n(Y) (which exists as Y 7! f , thus �n(Y) 7!0n �n(f)in En � n). By (y) and (P2), it follows Xn 7!n �n(f 0) for all n > n0.(Note that �n(f) 2 Un.) Thus, �n(Y) 7!0n �n(f 0) is a bundle in En � n. Byde�nition of the bundle relation 7! in F , Y 7! f 0.(P3) Let f 2 U such thatA(f) consists of at least two elements. SinceA0n(�n(f))� A0n+1(�n+1(f)) there is some n0 > rank(f) such thatA0n(�n(f)) containsat least two elements for all n > n0. By (P3), for each n > n0, there is sometn 2 IR+ and a bundle Xn 7!n �n(f) in En with Rn(Xn; �n(f)) = ftng 9Thus,(**) Xn � n 7!0n �n(f) is a bundle in En � n with R0n(Xn � n; �n(f)) =ftng.By induction on n we de�ne subsets Yn of Fn and in�nite sets In of naturalnumbers such that I0 � I2 � : : : and Yn = gk(Xk � n) for all k 2 In.9 The case Rn(Xn; �n(f)) = ? is not of interest here, since then event �n(f) wouldnot be executable. 30

Let I0 = fn j n > n0 g. We suppose that n > 1 and that Y1; : : : ; Yn�1and I0; : : : ; In�1 are already de�ned. As Fn = gn(En � n) is �nite (sinceEn is �nitely approximable) and gk(Xk � n) � Fn for all k 2 In�1 thereexist Yn � Fn and an in�nite subset In of In�1 with Yn = gk(Xk � n) forall k 2 In. Let Y = [n>1Yn:Clearly, Yn = f f 2 Y j rank(f) 6 n g = Y \ Fn. Thus, �n(Y) = �n(Y \Fn) = �n(Yn). We show that Y 7! f is a bundle in F with R(Y; f) = ftgfor some t 2 IR+.Let 7!k;n and Rk;n be the bundle relation and bundle delay function ofEk � n respectively. (Thus, 7!0n=7!n;n and R0n = Rn;n.) Let n > n0. Wechoose some k 2 In with k > n. Then,Xk � n = �k(gk(Xk � n)) = fn;k(�n(Y)):Since Xk 7!k �k(f) we have Xk � n 7!k;n �k(f). As fn;k is an isomorphismEn � n �! Ek � n and �k(f) = fn;k(�n(f)) we obtain �n(Y) 7!0n �n(f):Thus, Y 7! f . Moreover, for all n > n0, ftn0g = R0n0(�n0(Y); �n0(f)) =Rn;n0(Xn � n0; �n(f)) � Rn(Xn; �n(f)) = f tn g: Thus, tn = tn0 for alln > n0 and R(Y; f) = f tn0 g.(iii) As a next step we prove that F is �nitely approximable. Let (f1; u1) : : : (fk;uk) 2 Traces(F). Then, (�n(f1); u1) : : : (�n(fk); uk) 2 Traces(En � n) forall n > maxf u1; : : : ; uk g. Vice versa, if (e1; u1) : : : (en; un) 2 Traces(En �n) then (gn(e1); u1) : : : (gn(ek); uk) 2 Traces(F). Thus, mintimeF (f) =mintimeEn�n(�n(f)) for all f 2 F with n > rank(f). Hence, F � n =f gn(e) j e 2 En � n g. In particular, as En � n is �nite, F � t is �nite for allt > 0. Hence, F is �nitely approximable.(iv) Finally we show that F is a limit, or more precisely, that EF is the limitof the Cauchy sequence (En). It is easy to see that fn : En � n �! F � n,fn(e) = gn(e), is an isomorphism En � n �! F � n. We obtain d(En;F) 62�n for all n > 1. Thus, d(En;EF) 6 2�n for all n > 1. Therefore, limEn =EF .5.5 Time-guardednessWe now give a metric denotational semantics for (a subset of) PA based onequivalence classes (under 'iso) of timed event structures. With slight modi�-cations we use the standard procedure (as explained in Section 5.2) to de�nea denotational semantics on complete metric spaces which is based on non-expansive/contracting semantic operators and Banach's �xed point theorem.The main di�erence with the standard (untimed) case is the notion of `guard-edness' which ensures the well-de�nedness of recursive programs. While inthe untimed case [7,29] guardedness ensures that each process instantiation31

is preceded by an action-pre�x, we use a notion of time guardedness (like intimed CSP [37]) which guarantees that a recursive process instantiation canonly happen after a positive amount of time. In other words, time guardednessprevents a process instantiation to take place at time 0 like e.g. in x+ a[1;2) : 1or a[0;1) : x. Formally, the time guard of expression P is derived from the syn-tax of P and yields a lower bound for the minimal time instant where a processinstantiation is possible. As a subsidiary notion we de�ne the minimal timeat which an expression can successfully terminate.De�nition 33 (Minimal time of termination). Function pmin : Expr �!IR+ [f1g is de�ned by:pmin(0)=df 1pmin(1)=df 0pmin(x)=df 0pmin(aI : P)=df inf (I) +pmin(P)pmin(op P)=df pmin(P) for op 2 f nA; [�] gpmin(P ; Q)=df pmin(P) +pmin(Q)pmin(P op Q)=df minfpmin(P);pmin(Q) g for op 2 f+; [> gpmin(P jjAQ)=df maxfpmin(P);pmin(Q) gpmin(P �t Q)=df minfpmin(P); t+pmin(Q) g:Most of the rules are self-explanatory. For process variable x the minimal timeof termination is supposed to be `unknown' (as it depends on the declaration).Thus, we use 0 as the lower bound of the minimal time of termination forexpressions of the form x. If P ; Q terminates successfully at time t, then t is ofthe form t = tP+tQ where tP is the time at which P has successfully terminated(thus, tP > pmin(P)) and tQ is the time at which Q can perform a successfultermination event when started at time point 0 (thus, tQ > pmin(Q)).Example 34 For instance, for the expression P ; Q whereP = a[1;2] : � b[3;1) : 0 [> 1 � and Q = c[0;1] : 1we havepmin(P ; Q) = pmin(P) +pmin(Q) = (1 +minf 3 +1; 0 g) + 0 = 1:The rule for pmin(P jjAQ) is based on the fact that P jjAQ can only performa successful termination event if both components P and Q are ready to doso. Since pmin(P) is derived from the syntax of P (rather than the seman-tics) we cannot expect that pmin(P) yields the exact minimal terminationtime. For instance, for the expression P = a[1;2] : 1 jjfa g b[1;5) : 1, we obtain32

pmin(P) = 1 while P cannot terminate as its left component waits forever forthe synchronisation on a. (So, the exact minimal termination time of P is1.)By structural induction on terms we de�ne the time guard of an expression.Intuitively, the time guard is the minimal time instant at which a processinstantiation can take place. For instance, for an expression of the form P ; Qwe distinguish between two kinds of process instantiations:� a process instantiation that is in the scope of P which happens at the earliestat time tg(P),� a process instantiation that is in the scope of Q which happens at time t+uwhere t is the time instant at which P performs a successful terminationevent (hence, t > pmin(P)) and u is the time at which Q (when started attime 0) instantiates the process (hence, u > tg(Q)).For the expression P = x 2 Var the process instantiation takes place at time0. Thus, the time guard of x has to be de�ned as 0.De�nition 35 (Time guard). Function tg : Expr �! IR+ [f1g is de�nedby: tg(0)=df 1tg(1)=df 1tg(x)=df 0tg(aI : P)=df inf (I) + tg(P)tg(op P)=df tg(P) for op 2 f nA; [�] gtg(P op Q)=df minf tg(P); tg(Q) g for op 2 f+; jjA ; [> gtg(P ; Q)=df minf tg(P);pmin(P) + tg(Q) gtg(P �t Q)=df minf tg(P); t+ tg(Q) g:For declaration decl let tg(decl) =df inf f tg(decl(x)) j x 2 Var g: decl is calledtime-guarded i� tg(decl) > 0.Example 36 For the expressionsP1= x+ a[1;1) : yP2= a[0;1) : xP3= b(7;8] : 0�5 (P2 jjfa g y)P4= c[2;3] : (x [> b[1;1) : 1)
33

we have: tg(P1) = minf tg(x); tg(a[1;1) : y) g = minf 0; 1 + 0 g = 0;tg(P2) = 0 + tg(x) = 0 + 0 = 0;tg(P3) = minf7; 5 + tg(P2)g = minf 7; 5 + 0 g = 5;tg(P4) = 2 + tg(x [> b[1;1) : 1) = 2 + minf 0; 1 + 0 g = 2:Thus, if Var = f x; y g and decl1(x) = P3, decl1(y) = P4, decl2(x) = P1,decl2(y) = 0 thentg(decl1) = inf f 5; 2 g = 2; tg(decl2) = inf f 0;1g = 0:Hence, decl1 is time-guarded while decl2 is not.Similarly to the observation we made for pmin(�), tg(�) is only a lower boundfor the minimal time instant at which a process instantiation is possiblerather than the exact time. For instance, for P = a[1;2] : x jjf a g b[1;5) : 1 wehave tg(P) = 1, while the process instantiation x is never possible.5.6 A metric semantics for TGPAWe give a metric semantics to TGPA, the set of time-guarded processes, i.e. theset of pairs hdecl; P i where decl is a time-guarded declaration and P an expres-sion. For the de�nition of the meaning functionM : TGPA �! TES�n='iso welift the semantic operators of Section 4 to operators on TES�n='iso . Given thatall operators de�ned in Section 4 preserve 'iso and �nitely approximability (ascan be shown by straightforward proof) we may de�ne for E, F 2 TES�n='iso :op E =df Eop E for op 2 f aI : ; nA; [�] g andE op F =df EE op F for op 2 f+; ; ; jjA ; [>;�t gwhere E, F are representatives of E and F, respectively. Let E0 be the equiv-alence class of the empty tes and E1 the equivalence class of the tesE1 =df (f e g;?;?; f (e;p) g; f (e; [0;1)) g;?;?): (4)Together with these semantic operators, TES�n='iso constitutes a PA-algebra.The following theorem states the non-expansiveness of the operators in ourprocess algebra with respect to distance d. Moreover, it shows that timed34

pre�xing is contracting (if inf (I) 6= 0) and that timeout is contracting in itssecond argument (if t > 0).Theorem 37 For E;E0;F;F0 2 TES�n='iso we have(1) d(aI :E; aI :E0) = 2�inf (I) � d(E;E0)(2) d(E opF;E0 opF0) 6 max fd(E;E0);d(F;F0) g for op 2 f+; jjA ; [> g(3) d(opE; opE0) 6 d(E;E0) for op 2 f nA; [�] g(4) d(E�t F;E0 �t F0) 6 max fd(E;E0); 2�t � d(F;F0) g(5) d(E ; F;E0 ; F0) 6 max nd(E;E0); 2�pmin(E) � d(F;F0) owhere pmin(EE) =df inf fmintimeE(e) j e 2 E ^ l(e) = pg.PROOF. Let E ; E 0;F and F 0 be representatives of E, E0, F and F0, respec-tively.(1) It is easy to check that mintimeaI :E(e) = mintimeE(e)+ inf (I) for e 2 E ,since these events can only occur if the new event labelled a has occurredbefore, which causes a delay of at least inf (I). So, if E and E 0 agree upto time u, say, then aI : E and aI : E 0 agree up to time inf (I)+u. That is,d(aI : E ; aI : E 0) = 2�inf (I)+u = 2�inf (I) � 2�u = 2�inf (I) � d(E ; E 0):(2) We consider +; the proofs for the other cases go along similar lines.Assume that E and E 0 agree up to time u and F and F 0 agree up totime v. From De�nition 9 it is not di�cult to see that mintimeE+F (e) =mintimeE(e) if e 2 E and mintimeF(e) if e 2 F 10 . So, mintimeE+F(e) 6minfmintimeE(e);mintimeF(e) g. An analogous reasoning applies to E 0+F 0. This means that E+F and E 0+F 0 agree at least up to timeminf u; v g.But then we have:d(E + F ; E 0 + F 0) 6 maxf 2�u; 2�v g = maxf d(E ; E 0); d(F ;F 0) g:(3) Straightforward, since abstraction and relabelling do only change the la-bels of events and do not a�ect the timing of events.(4) Easy from the de�nition of the timeout operator and the results for choiceand pre�x in this theorem.(5) Assume E and E 0 agree up to time u and F and F 0 agree up to timev. Recall that pmin(E) is the minimal time at which E can performan event labelled with p. Since events in F can only occur after theoccurrence of a p in E we have that mintimeE ;F(e) = mintimeE(e) ife 2 E and equals pmin(E) +mintimeF (e) if e 2 F . So, mintimeE ;F(e) 610 Recall that mintimeE(e) =1 if e 62 E .
35

minfmintimeE(e);pmin(E) +mintimeF(e) g. For E 0 ; F 0 we obtain a simi-lar result. Now distinguish between (a)pmin(E) > u and (b)pmin(E) 6 u.For these cases we have:(a) pmin(E) > u, or equivalently, 2�pmin(E) < d(E ; E 0). Since E and E 0 agreeup to time u it follows that pmin(E 0) > u. An event of F (resp. F 0)can only happen after the successful termination of E (resp. E 0). Frompmin(E) > u and pmin(E 0) > u it now follows that E ; F and E 0 ; F 0agree at least up to time u. So, in this case d(E ; F ; E 0 ; F 0) 6 d(E ; E 0),and henced(E ; F ; E 0 ; F 0) 6 max n d(E; E 0); 2�pmin(E) � d(F ;F 0) o :(b) pmin(E) 6 u, or equivalently, 2�pmin(E) > d(E ; E 0). Since E and E 0 agreeup to time u it follows pmin(E) = pmin(E 0). Now distinguish between(i) u 6 pmin(E)+ v and (ii) u > pmin(E)+ v. For case (i) we have thatE ; F and E 0 ; F 0 agree at least up to time u, whereas for case (ii) theyagree at least up to time pmin(E) + v. So in this case,d(E ; F ; E 0 ; F 0) 6 max n d(E; E 0); 2�pmin(E) � d(F ;F 0) o :As a next step we prove that Fdecl is contractive with respect to ~d where ~d isde�ned by ~d(�1; �2) = supfd(�1(P); �2(P)) j P 2 Expr g for homomorphisms�1, �2 : Expr �! TES�n='iso . In order to prove that Fdecl is contracting weuse the following two lemmata.Lemma 38 For homomorphism � : Expr �! TES�n='iso and P 2 Expr:pmin(�(P)) > pmin(P):PROOF. Straightforward by structural induction on P .Lemma 39 For homomorphisms �1, �2 : Expr �! TES�n='iso and P 2 Expr:d(�1(P); �2(P)) 6 2�tg(P) � ~d(�1; �2):PROOF. By induction on the structure of P .Base: the cases P = 0 and P = 1 are straightforward, e.g. for 0 we haved(�1(0); �2(0))= f �1 and �2 are homomorphisms gd(E0;E0)= f hTES�n='iso ;di is an ultra-metric space g36

0:If P = x 2 Var then tg(P) = 0 and | by de�nition of ~d | it followsd(�1(P); �2(P)) 6 ~d(�1; �2).Induction Step: we illustrate this case for timed action-pre�x and sequentialcomposition; the proofs for the other cases are similar and are omitted here.(1) Consider P = aI : Q. Then we derive:d(�1(aI : Q); �2(aI : Q))6 f Theorem 37; �1 and �2 are homomorphisms g2�inf (I) � d(�1(Q); �2(Q))6 f induction hypothesis g2�inf (I) � 2�tg(Q) � ~d(�1; �2)= f de�nition of tg g2�tg(P) � ~d(�1; �2):(2) Let P = Q ; R. Then we derive:d(�1(Q ; R); �2(Q ; R))6 f Theorem 37; �1 and �2 are homomorphisms gmax nd(�1(Q); �2(Q)); 2�pmin(�1(Q)) � d(�1(R); �2(R))o6 f Lemma 38 gmax nd(�1(Q); �2(Q)); 2�pmin(Q) � d(�1(R); �2(R))o6 f induction hypothesis (twice) gmax n2�tg(Q) � ~d(�1; �2); 2�(pmin(Q)+tg(R)) � ~d(�1; �2)o= f de�nition of tg g2�tg(P) � d(�1; �2):Theorem 40 For each decl and homomorphisms �1, �2 : Expr �! TES�n='iso:~d(Fdecl(�1); Fdecl(�2)) 6 2�tg(decl) � ~d(�1; �2):PROOF. By structural induction on P we show thatd(Fdecl(�1)(P); Fdecl(�2)(P)) 6 2�tg(decl) � ~d(�1; �2):Base: for P 2 f 0; 1 g the result follows directly. For case P = x we derive:d(Fdecl(�1)(x); Fdecl(�2)(x))= f de�nition of Fdecl g 37

d(�1(decl(x)); �2(decl(x)))6 f Lemma 39 g2�tg(decl(x)) � ~d(�1; �2)6 f tg(decl) = inf f tg(decl(x)) j x 2 Var g g2�tg(decl) � ~d(�1; �2)Induction Step: from Theorem 37 it followsd(E op F;E0 op F0) 6 max fd(E;E0);d(F;F0)g (5)for op 2 f+; ; ; [>;�t; jjA g. Using this result we derive:d(Fdecl(�1)(P op Q); Fdecl(�2)(P op Q))6 f (5) gmax fd(Fdecl(�1)(P); Fdecl(�2)(P));d(Fdecl(�1)(Q); Fdecl(�2)(Q))g6 f induction hypothesis (twice) g2�tg(decl) � ~d(�1; �2):A similar reasoning applies to the unary operators f aI : ; nA; [�] g.This result says that Fdecl is contracting with contraction coe�cient 2�tg(decl)provided that decl is time-guarded, that is, tg(decl) > 0. Thus, for time-guarded declaration decl, the higher-order function Fdecl has a unique �xedpoint, say �decl. The metric semantics M : TGPA �! TES�n='iso is nowde�ned by M(decl; P) =df �decl(P):6 A consistent operational interleaving semanticsMost timed process algebras are based on an interleaving semantics. In orderto facilitate a comparison with these existing approaches and to investigatethe `compatibility' of our proposal with the standard interleaving semanticsof LOTOS (in a sense which will be clari�ed later) we present an operationalinterleaving semantics for PA and investigate its relation to our metric se-mantics. We start by introducing the notions of timed transition system and(strong) timed bisimulation. Then we present the operational interleaving se-mantics of PA, after which we study the consistency between this interleavingand the non-interleaving semantics.
38

6.1 Timed transition systemsThe notions of timed transition system and timed bisimulation, a timed variantof Milner's and Park's strong bisimulation are de�ned as follows (see also[33,25]).De�nition 41 (Timed transition system.) A timed transition system is aquadruple (S; L; �! ; s0) with� S, a non-empty set of states� L � Act� IR+, a set of labels� �! � S � L� S, a transition relation� s0 2 S, the initial state.We will write p a;t��! q rather than (p; (a; t); q) 2 �! .De�nition 42 (Timed bisimulation.) Two equally labelled timed transitionsystems Ti = (Si; L; �! i; s0i) are timed bisimilar, denoted T1 � T2, if thereexists a bisimulation, i.e. a relation R � S1 � S2 with (s01; s02) 2 R and forwhich for all (p; q) 2 R we have:(1) whenever p a;t��!1 p0 for some p0 2 S1 then there exists some q0 2 S2 with(p0; q0) 2 R and q a;t��!2 q0, and(2) whenever q a;t��!1 q0 for some q0 2 S2 then there exists some p0 2 S1 with(p0; q0) 2 R and p a;t��!2 p0.6.2 A timed interleaving semanticsThe operational semantics de�nes a set of transition relations a;t��! . Propo-sition P a;t��!P 0 denotes that P can perform action a 2 Act, at time t, andsubsequently evolve into P 0. Let �! be the smallest relation closed under allinference rules of Table 1.Let ut(P) denote the set of time instants at which P can initially perform anurgent action. Let PA+ denote PA including the auxiliary operators t[] andtf g.De�nition 43 (Time to initial urgent event). Function ut : PA+ �! P(IR+ [f1g) is de�ned by:ut(t[P]) =df t + ut(P)ut(P op Q)=df ut(P) [ut(Q) for op 2 f+; [>; jjA g39

Table 1Operational interleaving semantics for PA ` 1 p;t���!0t 2 I ` aI : P a;t��! t[P]P a;t��!P 0 ` t0 [P] a;t+t0����! t0 [P 0]P a;t��!P 0 t 6 mt(Q) ` P +Q a;t��!P 0Q a;t��!Q0 t 6 mt(P) ` P +Q a;t��!Q0P a;t��!P 0 a 6= p ` P ; Q a;t��!P 0 ; QP p;t���!P 0 ` P ; Q �;t��! t[Q]P a;t��!P 0 (a 6= p ^ t 6 mt(Q)) ` P [> Q a;t��!P 0 [> tfQ gP p;t���!P 0 t 6 mt(Q) ` P [> Q p;t���!P 0Q a;t��!Q0 t 6 mt(P) ` P [> Q a;t��!Q0P a;t��!P 0 t > t0 ` t0fP g a;t��! t0fP 0 gP a;t��!P 0 a 62 A [fpg ` P jjAQ a;t��!P 0 jjAQQ a;t��!Q0 a 62 A [fpg ` P jjAQ a;t��!P jjAQ0P a;t��!P 0 ^ Q a;t��!Q0 a 2 A [fpg ` P jjAQ a;t��!P 0 jjAQ0P a;t��!P 0 a 62 A ` P n A a;t��!P 0 nAP a;t��!P 0 a 2 A ` P n A �;t��!P 0 n AP a;t��!P 0 ` P [�] �(a);t����!P 0[�]P a;t0���!P 0 t0 6 t ` P �t Q a;t0���!P 0t 6 mt(P) ` P �t Q �;t��! t[Q]P a;t��!P 0 decl(x) = P ` x a;t��!P 0ut(tfP g)=df f t0 2 ut(P) j t0 > t gut(P ; Q)=df ut(P)ut(op P)=df ut(P) for op 2 f nA; [�] gut(P �t Q)=df ut(P) [f t gut(x)=df ut(P) for x := P:For all other syntactical constructs let ut(P) =df ?.Let mt(P) abbreviate min(ut(P)), where min? equals 1. In order to let utbe well-de�ned we require process instantiations to be guarded.Process 1 can perform the successful termination actionp at any time t. aI : Pcan perform action a at time t 2 I while evolving into t[P]. Process t0 [P] canbe considered as process P shifted t0 time units in advance. That is, if P can40

perform action a, say, at time t, then t0 [P] can perform a at time t+t0. Notethat t0 [P] is only an auxiliary construct; it has no counterpart at the languagelevel.The rules for P +Q are somewhat adapted since (initial) urgent events in Por Q can decide the choice. E.g., in a4 + (b3 �2 Q), the time-out will occurat time 2, and resolve the choice in favour of Q. In general, if P performs anaction at time t then P + Q can perform the same provided that Q cannotperform a time-out at any time earlier, i.e., if t 6 mt(Q). By symmetry, asimilar condition is obtained for Q performing an action. Similar conditionsappear for [>, and �.The rules for ; are a straightforward extension of the rules for the untimedcase except that in case P performs a successful termination action p at timet, then P ; Q evolves into t[Q] rather than Q. This represents that t time unitshave passed before Q can start with its execution.If P performs an action at t and evolves into P 0 then P [> Q can do the samewhile evolving into P 0 [> tfQ g. Process tfQ g behaves like Q except thatit is unable to perform events before t. This ensures that Q cannot disruptP 0 [> Q by performing an action at time t0, say, while P has performed anaction at time t > t0. The other inference rules for disrupt are straightforwardextensions of the rules for the untimed case.The inference rule for t0fP g is that if P can perform an action at time t, thent0fP g can do so if t > t0. Note that t0fP g is | like t0 [P] | an auxiliaryoperator that cannot be used by the speci�er.The rules for independent parallel composition, hiding, and relabelling arestraightforward extensions of the untimed rules. Synchronisation can only takeplace when both participants can perform an equally labelled action whoselabel is in A (or equals p) at time t.If P performs an action at time t0, with t0 6 t, and evolves into P 0 then P �tQcan do the same; in this case the possibility that Q happens is dropped, sinceP has performed an action before (or at) time t. At time t the time-out canhappen and the resulting process is t[Q]. This can only be done if t 6 mt(P),which ensures that the time-out is not performed if P can perform anothertime-out before t.For expression P and declaration decl we denote by O(decl; P) the timedtransition system obtained from the inference rules of Table 1, that isO(decl; P) =df (TGPA+;Act� IR+; �! ; P)
41

6.3 Consistency of metric and operational semanticsIn order to assess the relationship between our timed event structure and theoperationally de�ned interleaving semantics we �rst de�ne an \interleavingview" of the true concurrency semantics (like in [6,26,29]) and prove that thisperspective is timed bisimilar to the operational semantics.De�nition 44 (Interleaving view on event structure semantics). The transi-tion relation �! � TES�n='iso �(Act � IR+) � TES�n='iso on timed eventstructures is de�ned by E a;t��!E 0 i� there exists some event e 2 init(E) suchthat(1) l(e) = a,(2) t 2 A(e),(3) 8 e0 2 init(E) \ U : (e; e0 _ e0 ; e)) t 6 A(e0), and(4) E 0 = (E 0;;0; 7!0; l0;A0;R0;U 0) with� E 0 = E � f e g� ;0 =; \ (E 0 � E 0)� 7!0= (7! �f (X; e0) 2 7!j e 2 X g) [f (?; e0) j e0 ; e g� l0 = l � E 0� A0(e0) = A(e0) \ Te;e0[t;1) \ TX I7!e0;e2X t+I� R0 = (R �7!0) [f ((?; e0); [0;1)) j ? 7!0 e0 g� U 0 = U \ E 0:The interleaving semantics of E, denoted I(E), is de�ned as:I(E) =df (TES�n='iso ;Act� IR+; �! ; E):It is not di�cult to check that in the above de�nition, the structure E 0 is indeeda timed event structure. We leave the proof of this fact to the interested reader.Constraints (1) and (2) are straightforward. Constraint (3) checks whetherthere does not exist an initial urgent event that might prevent event e fromhappening at time t. This constraint is closely related to a similar condition inthe de�nition of timed event trace, cf. De�nition 5. The intuitive interpretationof constraint (4) is as follows. First, the event e labelled with a is removedfrom the set of events and the con
icts between the remaining events areretained. Each bundle X 7! e0 with e 2 X is removed, because the conditionthat this bundle poses, namely some event in X must have happened before e0can happen, has now been satis�ed. Each event e0 that is disabled by e cannothappen anymore, and is made impossible by introducing an empty bundlepointing to it.
42

In addition, the delay of an event e0 which has a bundle pointing to it originat-ing from event e has to be checked: if t plus the required relative time, I say,between e and e0 is larger than the delay of e0, e0 should be postponed to (atleast) t+I. Because this should hold for all bundles pointing to e0 originatingfrom e, the intersection of bundle delays is taken such that all required rela-tive delays are satis�ed. Finally, in order to enforce that the causal relationbetween e and e0 induces a temporal precedence, the delay of e0 becomes atleast t in case e; e0.Some example transitions of a timed event structure are depicted in Figure 4.
a; 5 c; 15 b

d[15; 21]
?b

c d[13; 21]
[7; 12]

7
b
c

[2; 7] 8 d[2; 21]a 4 2 Fig. 4. Some example transitions for a timed event structureTheorem 45 (Consistency theorem). For any hdecl; P i 2 TGPA :I(M(decl; P)) � O(decl; P):PROOF. We provide the proof here for �nite behaviours only; the proof forrecursive behaviours can be provided in a similar way as the consistency proofprovided in [7] for the untimed case. For �nite behaviours we can considerM(P) and O(P), i.e. the declarations decl can be omitted, and prove that forP �M(P):(1) if P a;t��!P 0 then 9 E 0 :M(P) a;t��!E 0 and P 0 � E 0, and(2) if M(P) a;t��!E 0 then 9P 0 : P a;t��!P 0 and E 0 � P 0.The proofs of both facts are by induction on the structure of P .(1) Base case: for P = 0 the proposition follows easily, since 0 has no deriva-tions. For P = 1 the only possible transition is labelled with p; t for anyt, while evolving into 0. It is easy to see from (4) and De�nition 44 thatM(P) = E1 p;t��!E0 and that 0 � E0.Induction step: consider the Q and R with Q � M(Q) and R � M(R)and assume the proposition holds for Q and R. We provide the proofs forpre�x, timeout and disrupt. The proofs for the other cases are conducted43

in a similar way. Let M(Q) = EQ = (EQ;;Q; 7!Q; lQ;AQ;RQ;UQ) andde�ne M(R) and M(P) in a similar way.(a) P = aI : Q. Let P a;t��!P 0. Since pre�xing has only one possiblederivation for any t 2 I, it follows P 0 = t[Q] and t 2 I. FromDe�nition 8 it follows that M(P) equals M(Q) where all events inEQ are pointed to by a new con
ict-free event e with lP (e) = a andAP (e) = I. By De�nition 44 it follows that M(P) a;t��!E 0 for anyt 2 I. From the structure of M(P) = aI :M(Q) and M(P) a;t��!E 0it follows that E 0 equals M(Q) where all events e0 2 EQ have anevent delay AQ(e0)+t, the bundle delay of f e g 7! e0 plus the time ofoccurrence of e. Since Q �M(Q) it now follows P 0 � E 0.(b) P = Q�tR. Let P a;t0��!P 0. According to the inference rules of Table 1we have either� Q a;t0��!Q0 and t0 6 t. Then P 0 = Q0. From De�nition 10 itfollows that M(P) equals M(Q) + �̂f t g :M(R). Let e be thenew urgent event labelled with � and delay t. From the struc-ture of M(P) and De�nition 44 it follows that any event ofM(Q) can be performed with a delay smaller than t, the delayof the con
icting event e. From the induction hypothesis it fol-lows M(Q) a;t0��!E 0 and Q � E 0. Since P 0 = Q0 it now followsP 0 � E 0.� t 6 mt(Q). Then P 0 = t[R]. The structure of M(P) is as de-scribed just above. It follows from De�nition 44 thatM(P) canexecute the initial event e if there is no con
icting initial ur-gent event, e0 say, with a delay smaller than t. From the struc-ture of M(P) it follows that such event (if any) is in EQ. It isstraightforward to see that this condition on the execution of ecorresponds to t 6 mt(Q). From the case for pre�x we infer that�̂f t g :M(R) �;t��!E 0 where E 0 equals M(R) with all events hav-ing an event delay AR(e0)+t. Since R � M(R) it now followsP 0 � E 0.(c) P = Q [> R. Let P a;t��!P 0. According to the inference rules of Ta-ble 1 we have either� R a;t��!R0 and t 6 mt(Q). Then P 0 = R0. It follows from Def-initions 14 and 44 that M(P) = M(Q) [> M(R) can executean initial event ofM(R) provided there is no con
icting urgentevent in M(Q) that is forced to occur earlier. This conditioncorresponds to t 6 mt(Q). The proposition now follows directlyfrom the induction hypothesis.� Q p;t��!Q0 and t 6 mt(R). Similar to the previous case.� Q a;t��!Q0 with a 6= p and t 6 mt(R). Then P 0 = Q0 [> tfR g.From De�nition 14 it follows that all initial events in M(R)are in con
ict with any event in M(Q). M(P) can execute aninitial event of M(Q) provided there is no con
icting urgent44

event in M(R) that is forced to occur earlier. This conditioncorresponds to t 6 mt(R). Under this condition M(P) a;t��!E 0where E 0 equalsM(Q) [> E, where E is representing M(tfR g).Since the event e labelled with a is in con
ict with any initialevent of M(R) it follows from De�nition 44 that in E all theinitial events of M(R) are postponed with t. Using this fact,and the fact that Q �M(Q) and R �M(R) it follows P 0 � E 0.(2) By induction on the structure of P ; similar to the proof of (1).6.4 Consistency with a cpo-based semanticsWe conclude this section with a brief comparison of our metric semanticsand the cpo-based operational semantics Mcpo of Katoen et al. [23]. Theformal relationship between our cpo and metric semantics is as follows. LetTES�n be the set of timed event structures that are �nitely approximable. Fortime-guarded hdecl; P i it follows that Mcpo(decl; P) is �nitely approximable.Function f : TES�n �! TES�n='iso with f(E) =df EE is a homomorphismbetween the PA-algebras TES�n and TES�n='iso . Then, according to the resultsof [8], we obtain for any time-guarded process hdecl; P i: f (Mcpo(decl; P)) =M(decl; P): This entails that the presented metric semantics is signi�cantlymore abstract than the cpo-based semantics of TGPA.7 Concluding remarksIn this paper we have extensively studied the use of a metric denotationalsemantics for a real-time process algebra in a branching-time non-interleavingsetting. This study can be seen as a continuation of the work of Loogen andGoltz in the setting of prime event structures for TCSP. In this untimedcase the notion of distance is based on the number of discrete computationsteps to which two prime event structures do agree. In our real-time settinga continuous version of this notion is adopted, and the distance is based onthe amount of time to which two timed event structures do agree. Apart fromsome technical di�erences | like the restriction to executable events | thatappeared due to the use of Langerak's bundle event structures rather than themore primitive prime event structures, we can conclude that the approach ofLoogen and Goltz is well adaptable to the real-time case. Finally, we extendedthe consistency result between the prime event structure semantics and theoperational semantics of (guarded) theoretical CSP to a consistency resultbetween our timed event structure semantics and an operational interleavingsemantics for our timed version of LOTOS. This consistency is de�ned interms of a timed notion of strong bisimilarity.45

AcknowledgementsThe authors would like to thank Ed Brinksma and Rom Langerak for use-ful discussions on timed event structures. The anonymous referees are kindlyacknowledged for their detailed comments and suggestions for improvement.References[1] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in ComputerScience, Vol. 3, Clarendon Press, pages 1-168, 1994.[2] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inf.,33:317{350, 1996.[3] R. Alur and D. Dill. A theory of timed automata. Th. Comp. Sc., 126:183{235,1994.[4] A.F. Ates, M. Bilgic, S. Saito and B. Sarikaya. Using timed CSP for speci�cationveri�cation and analysis of multi-media synchronization. IEEE J. on Sel. Areasin Comm., 14(1):126{137, 1996.[5] C. Baier, J-P. Katoen and D. Latella. Metric semantics for true concurrent realtime. In Automata, Languages, and Programming | ICALP'98, LNCS 1443,pages 568{580. Springer-Verlag, 1998.[6] C. Baier and M.E. Majster-Cederbaum. Denotational semantics in the cpo andmetric approach. Th. Comp. Sci., 135:171{220, 1994.[7] C. Baier and M.E. Majster-Cederbaum. The connection between an eventstructure semantics and an operational semantics for TCSP. Acta Inf., 31:81{104, 1994.[8] C. Baier and M.E. Majster-Cederbaum. How to interpret consistencyand establish consistency results for semantics of concurrent programminglanguages. Fund. Inf., 29:225{256, 1997.[9] C. Baier and M.E. Majster-Cederbaum. Metric semantics from partial ordersemantics. Acta Inf., 34:701{735, 1997.[10] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics ofconcurrency. Inf. and Contr., 54(1/2):70{120, 1982.[11] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. MIT Press, 1996.[12] J.W. de Bakker and E.P. de Vink. Denotational models for programminglanguages: applications of Banach's �xed point theorem. Topology and itsApplications, 85:35{52, 1998. 46

[13] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation languageLOTOS. Comp. Netw. & ISDN Syst., 14:25{59, 1987.[14] G. Boudol and I. Castellani. Flow models of distributed computations: threeequivalent semantics for CCS. Inf. and Comp., 114:247{314, 1994.[15] I. Castellani and G-Q. Zhang. Parallel product of event structures. Th. Comp.Sc., 179:203{215, 1997.[16] E.T. Copson. Metric Spaces. Cambridge Tracts in Mathematics 57, CambridgeUniversity Press, 1992.[17] J. Davies, J.W. Bryans and S.A. Schneider. Real-time LOTOS and timedobservations. In Formal Description Techniques VIII. Chapmann & Hall, 1995.[18] C.J. Fidge. A constraint-oriented real-time process calculus. In FormalDescription Techniques V, pages 363{378. North-Holland, 1993.[19] C.J. Fidge and J.J. �Zic. A simple, expressive real-time CCS. In Proc. 2ndAustralasian Conf. on Parallel & Real-Time Systems, pages 365{372, 1995.[20] E. Goubault. Durations for truly-concurrent transitions. In ProgrammingLanguages and Systems | ESOP'96, LNCS 1058, pages 173{188. Springer-Verlag, 1996.[21] W. Janssen, M. Poel, Q. Wu and J. Zwiers. Layering of real-time distributedprocesses. In Formal Techniques in Real-Time and Fault-Tolerant Systems,LNCS 863, pages 393{417. Springer-Verlag, 1994.[22] J-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. PhDthesis, University of Twente, 1996.[23] J-P. Katoen, D. Latella, R. Langerak and E. Brinksma. On specifying real-timesystems in a causality-based setting. In Formal Techniques in Real-Time andFault-Tolerant Systems, LNCS 1135, pages 385{405. Springer-Verlag, 1996.[24] J-P. Katoen, R. Langerak, E. Brinksma, D. Latella and T. Bolognesi. Aconsistent causality-based view on a timed process algebra including urgentinteractions. Form. Meth. in Sys. Design, 12:189{216, 1998.[25] A.S. Klusener. Models and axioms for a fragment of real-time process algebra.PhD thesis, Eindhoven University of Technology, 1993.[26] R. Langerak. Transformations and Semantics for LOTOS. PhD thesis,University of Twente, 1992.[27] R. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS.In Formal Description Techniques V, pages 331{346. North-Holland, 1993.[28] R. Langerak, E. Brinksma and J-P. Katoen. Causal ambiguity and partialorders in event structures. In Concur'97: Concurrency Theory, LNCS 1243,pages 317{332. Springer-Verlag, 1997.47

[29] R. Loogen and U. Goltz. Modelling nondeterministic concurrent processes withevent structures. Fund. Inf., 14(1):39{74, 1991.[30] A. Maggiolo-Schettini and J. Winkowski. Towards an algebra for timedbehaviours. Th. Comp. Sci., 103:335{363, 1992.[31] A. Mazurkiewicz. Basic notions of trace theory. In Linear Time, BranchingTime and Partial Order in Logics and Models for Concurrency, LNCS 354,pages 285{363. Springer-Verlag, 1989.[32] D. Murphy. Time and duration in noninterleaving concurrency. Fund. Inf.,19:403{416, 1993.[33] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.In Real-Time: Theory in Practice, LNCS 600, pages 526{548. Springer-Verlag,1992.[34] M. Nielsen, G.D. Plotkin and G. Winskel. Petri nets, event structures anddomains, part 1. Th. Comp. Sc., 13(1):85{108, 1981.[35] M. Nivat. In�nite words, in�nite trees, in�nite computations. In Foundationsof Computer Science III, Mathematical Centre Tracts 109, pages 3-52, 1979.[36] G.D. Plotkin. A structural approach to operational semantics. Technical ReportDAIMI FN-19, Computer Science Department, Aarhus University, 1981.[37] G.M. Reed and A.W. Roscoe. A timed model for Communicating SequentialProcesses. Th. Comp. Sc., 58:249{261, 1988.[38] A. Rensink. Posets for con�gurations! In Concur'92: Concurrency Theory,LNCS 630, pages 269{285. Springer-Verlag, 1992.[39] F.W. Vaandrager. A simple de�nition for parallel composition of prime eventstructures. Report CS-R8903, Centre for Mathematics and Computer Science,1989.[40] G. Winskel. Event structure semantics for CCS and related languages. InAutomata, Languages and Programming | ICALP'82, LNCS 140, pages 561{576. Springer-Verlag, 1982.[41] J.J. �Zic. Time-constrained bu�er speci�cations in CSP+T and timed CSP.ACM Trans. on Progr. Lang. and Sys., 16(6):1661{1674, 1994.

48

