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Machine Translation is the task of enabling computers to translate text from one language
into another. Statistical Machine Translation (SMT), in particular, applies methods from
Statistics and Machine Learning to automatically select a translation function that performs
well on existing translations, with the hope that it will also perform well on new sentences.

In recent years a lot of research has focused on using formal grammars and related for-
malisms for specifying translation functions. Among those are synchronous context-free
grammars [1, 5], synchronous tree-substitution grammars [10], synchronous tree-adjoining
grammars [27, 8], synchronous tree-sequence-substitution grammars [30], extended top-down
tree-to-string transducers [16, 14, 12], and multi-bottom-up tree transducers [11, 22].

In principle, these formalisms are amenable to formal treatment, just like weighted string
automata and weighted string transducers. The latter possess a rich theory with results about
closure properties, characterizations, complexity and decidability. Building on that strong
foundation, there is a versatile algorithmic toolbox, as witnessed by [24, 25, 2]. In conjunc-
tion, the theory and the toolbox allow for effective algebraic specification and subsequent
implementation of tasks in areas such as speech recognition [26] and morphology [15].

However, in the SMT realm, this kind of comprehensive formal treatment has yet to
happen. Most of the formalisms named above have been defined ad-hoc, so as to build a
translation system which can be evaluated.1 Core algorithms employed in those systems are
often monolithic, and they are implemented in thousands of lines of code, as witnessed by
open-source systems such as Moses [19], Joshua [21], or cdec [9]. The source code of most
research systems, including Hiero [6], is not available.

Being aware of weighted string automata and weighted string transducers, the community
does indeed express a desire for algebraic specification [18]. In fact, it has been shown
that the string devices can be employed for central algorithms [17, 7]. Moreover, May and
Knight made an effort to develop a toolkit, named Tiburon [23], for extended top-down tree
transducers. However, it has not been employed for building research SMT systems.

In the long run, we intend to provide components for (partial) algebraic specification of
research SMT systems with our system Vanda, which shall rest on three columns:

(A)financially supported by DFG VO 1011/6-1.
1This is an enormous feat by itself, one that requires immense engineering skill, and one we do not intend to

devalue.
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Figure 1: Representation of the decoding task as a workflow in Vanda Studio.

1. A theory and an algorithmic toolbox based on a versatile formal framework, namely
interpreted regular tree grammars, or IRTGs [20]. This framework is based on the ideas
of bimorphism semantics [3] and initial-algebra semantics [13], and it subsumes all of
the formalisms mentioned initially.

2. Vanda Toolbox, a Haskell library that implements the algorithmic toolbox. Haskell is
a clean and concise modern high-level language that is compiled into native code via
the Glasgow Haskell Compiler. It features a powerful static type system, yet it can still
be used for rapid prototyping because of automatic type inference at compile time.

3. Vanda Studio, a graphical (hyper)workflow management system that greatly facilitates
conducting experiments by providing both a standardized, well-documented interface
and the ability to specify alternatives within a single hyperworkflow. A prototype of
Vanda Studio has been implemented [4].

As a proof of our concept, we2 have implemented in Vanda Toolbox an IRTG-inspired
representation of extended top-down tree-to-string transducers, along with suitable algo-
rithms, e.g., for left/right product with regular weighted string/tree languages, binarization
of rules, determining n best derivations, rule extraction, and inside-outside EM training. This
implementation allows us to accomplish the following three tasks from the area of SMT:

Extraction Rule extraction from any given parallel corpus. To this end, we parse the target
(English) side using the Berkeley parser [29], and we use GIZA++ [28] to obtain a
word alignment for each sentence pair. We extract all rules that correspond to minimal
fragments [12].

Training Estimating rule weights.

Decoding Translating any given sentence (so far without language model).

Each of the tasks can be carried out from within Vanda Studio; as an example, Figure 1
shows the workflow representation of the translation task. Each box in the outer (shaded)
region corresponds to a part of a shell script to be run in a Unix environment, while the box
labeled “Decoder” represents a Haskell program, and the inner boxes are Haskell functions.

2The author had help from his colleagues Toni Dietze, Johannes Osterholzer, and Linda Leuschner.
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In my presentation, I will show how the three aforementioned tasks can be accomplished
in a component-based manner using Vanda Toolbox and Vanda Studio, and I will report on
the performance on medium-scale data.
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