3rd Exercise Sheet (April 25, 2013)

Weighted Tree Automata

Exercise 10 (Run semantics)
1. Consider the automaton A from Ex. 9(1) and a tree $\xi = \sigma(\gamma(\alpha), \alpha)$. Determine the set of runs $R_A(\xi)$ of A on ξ, as well as the set of valid runs $R_v^A(\xi)$.

2. Show for every r.a. Σ, bu-det FTA A over Σ and tree $\xi \in T_\Sigma$, that if $\xi \in L(A)$, then $|R_v^A(\xi)| = 1$.

Exercise 11 (Regular tree grammars)
1. Let $\Sigma = \{\sigma(2), \gamma(1), \alpha(0)\}$. Give regular tree grammars G_1, G_2 which generate the languages $L_1 = \{\xi \in T_\Sigma \mid \xi \text{ contains exactly one } \sigma\}$, respectively $L_2 = \{\xi \in T_\Sigma \mid \xi \text{ contains the pattern } \sigma(\cdot, \gamma(\cdot)) \text{ at least twice}\}$.

2. Let $G = (N, \Sigma, Z, P)$ be a regular tree grammar with $N = \{Z, A, B, C\}$, $\Sigma = \{\sigma(2), \alpha(0), \beta(0)\}$, and the set of productions P given by

 $Z \to \sigma(\sigma(A, B), C), \quad Z \to B, \quad A \to \alpha, \quad A \to B,$

 $B \to \beta, \quad B \to A, \quad B \to C, \quad C \to C.$

 Use the construction from the lecture to give a regular tree grammar in normal form equivalent to G.

Exercise 12 (Final-state normal form)
Consider the language L from Ex. 9.

1. Prove or refute: There is a bottom-up deterministic FTA $A = (Q, \Sigma, \delta, F)$ with $|F| = 1$ such that $L(A) = L$.

2. Construct an FTA B in final-state normal form that is equivalent to the solution of Ex. 9.

Exercise 13 (Relatedness)
1. Give an FTA A_1 that is related to the regular tree grammar G_1 from Exercise 11(1).

2. Give a regular tree grammar which is related to the FTA B from Exercise 12(2).