Formale Baumsprachen

Task 4 (bu-det fta)
Let \(\Sigma = \{ \sigma(2), \alpha(0), \beta(0) \} \) and \(\Delta = \{ \sigma(2), \gamma(1), \alpha(0) \} \) be ranked alphabets. Give deterministic bu-
a (a) \(L_1 = \{ \xi \in T_\Sigma \mid \xi \text{ contains at least one } \alpha \text{ and one } \beta \} \),
(b) \(L_2 = \{ \xi \in T_\Sigma \mid \xi \text{ contains an even number of } \alpha \text{ symbols} \} \), and
(c) \(L_3 = \{ \sigma(t_1, \sigma(t_2, \ldots \sigma(t_n, \alpha) \ldots)) \in T_\Delta \mid n \in \mathbb{N}, t_1, \ldots, t_n \in T_{\{\gamma(1), \alpha(0)\}} \} \).

Task 5 (string automata I)
Recall the concept of string automata. Let \(\Sigma \) be an alphabet and \(\# \notin \Sigma \). We define the ranked
alphabet \(\Sigma^\# = \Sigma^{(0)} \cup \Sigma^{(1)} \) where \(\Sigma^{(0)} = \{ \# \} \) and \(\Sigma^{(1)} = \Sigma \). Moreover, we define the \(\Sigma^\# \)-
algebra \((\Sigma^*, \theta) \) where \(\theta(\#) = \varepsilon \) and \(\theta(a)(w) = wa \) for every \(a \in \Sigma \) and \(w \in \Sigma^* \).

(a) Show that \(\Sigma^* \) is initial in the class of \(\Sigma^\# \)-algebras.
(b) We consider \(\Sigma = \{ a, b \} \) and the language \(L = \{ a^n b^m \mid n, m \in \mathbb{N} \} \). Sketch the diagram of a
total deterministic finite-state automaton accepting \(L \) and model the transition table using
a finite \(\Sigma^\# \)-algebra \(Q \). How can we interpret the uniquely determined homomorphism
\(h: \Sigma^* \to Q \)?
(c) Convince yourself that any total deterministic finite-state automaton can be modeled as
a quadruple \(A = (Q, \Sigma, \theta, F) \) where \((Q, \theta) \) is a finite \(\Sigma^\# \)-algebra and \(F \subseteq Q \). Define the
language accepted by \(A \) using the homomorphism \(h: \Sigma^* \to Q \).

Task 6 (string automata II)
Let \(\Sigma = \{ a, b \} \) be an alphabet.

(a) Give a finite state automaton \(A = (Q, \Sigma, q_0, F) \) that recognizes
\(L = \{ w \in \Sigma^* \mid |w|_a - |w|_b \mod 2 \equiv 0 \} \).
(b) Describe \(L \) using a homomorphism between the free monoid \((\Sigma^*, \circ, \varepsilon) \) and the monoid
\((\{0,1\}^Q \times Q, \times, 1_{Q \times Q}) \).
(c) Describe \(L \) using a monoid with carrier \((\Sigma^*)^{Q \times Q} \).

Note The tutorial’s time might not suffice for presenting all solutions. Please prepare to ask
for the solutions you are most interested in.