
Quantitative Analysis of
Distributed Randomized Protocols

Christel Baier Frank Ciesinski

Institut für Informatik I
Universität Bonn
Römerstrasse 164
53117 Bonn
Germany

{baier|ciesinsk|groesser}@cs.uni-bonn.de

Marcus Groesser

ABSTRACT
A wide range of coordination protocols for distributed systems, in-
ternet protocols or systems with unreliable components can for-
mally be modelled by Markov decision processes (MDP). MDPs
can be viewed as a variant of state-transition diagrams with discrete
probabilities and nondeterminism. While traditional model check-
ing techniques for non-probabilistic systems aim to establish prop-
erties stating that all (or some) computations fulfill a certain con-
dition, the verification problem for randomized systems requires
reasoning about the quantitative behavior by means of properties
that refer to the probabilities for certain computations, for instance,
the probability to find a leader within 5 rounds or the probability
for not reaching an error state.
The paper starts with a brief introduction into modelling random-
ized systems with MDPs and the modelling language Probmela
which is a guarded command language with features of impera-
tive languages, nondeterminism, parallelism, a probabilistic choice
operator and lossy channels. We summarize the main steps for a
quantitative analysis of MDPs against linear temporal logical spec-
ifications. The last part will report on the main features of the par-
tial order reduction approach for MDPs and its implementation in
the model checker LiQuor.

Categories & Subject Descriptors
Software [Software Engineering]: Software/Program Verification,
Model Checking, Reliability, Formal methods,
Mathematics of Computing [Probability and Statistics]: Markov
processes, Stochastic processes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMICS’05, September 5–6, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-148-1/05/0009 ...$5.00.

General Terms
Reliability, Languages, Theory, Verification

1. INTRODUCTION
In the past, several methods for analyzing quantitative aspects of
probabilistic systems have been suggested. These range from proof
techniques to model checking algorithms for formal models with
discrete or continuous probabilities, time-abstract, discrete-time or
continuous-time models, and fully probabilistic models or models
where nondeterminism and probabilism coexists, see e.g. [5] for an
overview.
We concentrate here on techniques for Markov decision processes
(MDP), an operational model for systems with discrete probabil-
ism and nondeterminism. For instance, MDPs occur as a natural
formal model for coordination algorithms for distributed systems
that use coin tossing for breaking symmetry or for communication
protocols that operate with unreliable channels (see e.g. [21] for
several randomized mutual exclusion, leader election or data link
protocols).
To specify the behavior of probabilistic concurrent systems sev-
eral process algebras, automata-models and other specification lan-
guages have been suggested. We follow here the guarded com-
mand language approach [14, 22, 23] and present the main ideas
of the modelling language Probmela [1], which resembles SPIN’s
input language Promela [17] and provides a simple and intuitive
way to specify the stepwise behavior of protocols that may behave
probabilistically, e.g., since they use coin tossing as algorithmic
concept or since they have exceptional faulty behaviors that occur
with some known probabilities. Probmela-processes are described
by standard constructs of imperative languages (assignments, con-
ditional commands, loops) and nondeterministic and probabilistic
choices. They may communicate over shared variables or through
message passing along perfect or lossy channels. Probmela has a
formal semantics that describes the stepwise behavior of the par-
allel composition of several processes by a MDP. The latter can
be constructed with an on-the-fly technique and serves as basis for
verification purposes.
To specify quantitative properties such as ”the deadlock probabil-
ity is smaller than 0.015” or ”the chance to select a leader within
the next 5 rounds is at least 95%” several temporal logics have
been suggested in the literature. Corresponding model checking
algorithms mainly rely on a combination of graph algorithms and

automata-based techniques as they are known for non-probabilistic
systems combined with techniques for solving linear programs [9,
7, 10, 12, 6]. Thus, verifying probabilistic systems against quanti-
tative properties is even harder than the purely qualitative verifica-
tion problem for non-probabilistic system. In particular, the state
space explosion problem is even more critical for MDPs than in the
non-probabilistic case. To handle the state space explosion prob-
lem several methods that have been developed for non-probabilistic
systems were adapted to Markovian models. Most popular is the
symbolic approach with multi-terminal binary decision diagrams
[2] which has been implemented in the model checker Prism and
successfully applied to many types of probabilistic systems [20].
The MDPmodel checker Rapture [19] uses an iterative abstraction-
refinement algorithm which groups states into blocks and itera-
tively refines the blocks with a bisimulation-like partitioning tech-
nique. These approachs focus on the verification of branching time
properties. Recently, it has been shown that also the partial order
reduction approach can be adapted to MDPs and linear [4, 11] or
branching [3] time properties. The goal is reducing the operational
model to be analyzed by ignoring certain transitions (and states)
that are redundant due to the interleaving semantics of distributed
systems. Partial order reduction yields the basis of the forthcoming
model checker LiQuor that takes as input a Probmela-program P
and a linear temporal logical formula ! and calculates the proba-
bility that ! holds for P by solving a linear program for the MDP
of a reduced model.
Organisation of the paper. In this paper, we summarize the main
concepts of the forthcoming model checker LiQuor that implements
the partial order reduction technique in the context of a quanti-
tative analysis of randomized protocols against "-regular linear
time specifications. Section 2 provides with a brief introduction
to modelling randomized protocols by the specification language
Probmela which yields an operational semantics by means of an
MDP. The main steps to compute the (extremal) probabilities for
linear time properties are summarized in Section 3. Section 4 ex-
plains how these techniques can be supported by the partial order
reduction approach and how they are realized in the model checker
LiQuor.

2. THE MODELLING LANGUAGE
PROBMELA

A probabilistic variant of SPIN’s input language Promela [17], called
Probmela, has been introduced in [1] as description language for
probabilistic concurrent programs. The idea is to describe the pro-
cesses that run in parallel by a guarded command language, similar
to the high-level description languages pGCL [22, 23] and MoDeST
[8]. A Probmela-program P = P1‖ . . .‖Pn consists of finitely many
processes Pi that run in parallel and might communicate over shared
variables or (synchronous/fifo) channels.

P ::= skip
∣∣ x := expr

∣∣ x := random(V)
∣∣ P1;P2

∣∣
IF :: bexpr1 ⇒ P1 . . . :: bexprn ⇒ Pn FI |
DO :: bexpr1 ⇒ P1 . . . :: bexprn ⇒ Pn OD |
PIF [#1] ⇒ P1 . . . [#n] ⇒ Pn FIP

The main ingredients to specify the behavior of the processes that
run in parallel are deterministic and randomized assignments, se-
quential composition, conditional commands (IF-FI), loops (DO-
OD) and a probabilistic choice operator (PIF-FIP).
The abstract syntax of this basic language is shown above where
x is a program variable (e.g., type boolean or integer), expr an ex-

pression of the same type as x, bexpri boolean expressions (called
guard) and #i "probabilities", i.e., values in the interval [0,1] such
that #1+ . . .+#n = 1. Probmela also allows for the special guard
”else” with the intuitive meaning that no other guard is satisfed. In
addition, Probmela has several other features like atomic regions,
process instantiation or substochastic distributions that are not ex-
plained here. Message passing over channels will be explained
later.
The atomic command skip means an atomic step which does not
change the values of the variables or contents of the channels. The
meaning of deterministic assignment is obvious. For the random-
ized assignment x := random(V)we assume thatV is a finite subset
of the domain of variable x and that a value v ∈V is assigned to x
according to a uniform distribution.
The intuitive behavior of P = PIF [#1] ⇒ P1 . . . [#n] ⇒ Pn FIP is
that first P resolves a probabilistic choice by which Pi is selected
with probability #i. The meaning of conditional commands and
DO-OD-loops is roughly as in Promela.
The terms bexpri ⇒ Pi are called guarded commands with their
usual meaning: if the boolean expression bexpri is true then sub-
process Pi can be executed. More precisely, in P= IF :: bexpr1⇒
P1 . . . :: bexprn ⇒ Pn FI there is a nondeterministic choice be-
tween the processes Pi where the corresponding guard bexpri holds
for the current variable evaluation. If none of the guards bexpri
holds then process P "blocks" which essentially means that P waits
until another process changes the values of the program variables
such that one of the guards bexpri evaluates to true.
The meaning of P = DO :: bexpr1 ⇒ P1 . . . :: bexprn ⇒
Pn OD is similar, the difference being that the nondeterministic
choice between the processes Pi with valid guards continues until
none of the guards holds, in which case P terminates.
The guards of a IF− FI or DO−OD statement need not to be
disjoint. The nondeterminism between the enabled guarded com-
mands can be useful, for instance, for underspecification (where
alternatives for the allowed behaviors are specified) or for mod-
elling the interface with an unpredictable environments (e.g., other
programs or human users).
Message passing via channels is provided in Probmela in form of
atomic communication actions c!expr (sending the current value
of expr along c) and c?x (receiving a value for variable x). The
classical (synchronous) handshaking of two processes is obtained
by declaring c as a synchronous channel, while for asynchronous
message passing c has be declared as a FIFO channel with fixed
(and finite) capacity. In addition, FIFO channels can be perfect or
unreliable. In the latter case, the user might specify the probability
for losing a message while inserting into the buffer. Other variants
of faulty channels, e.g., FIFO channels that might lose or corrupt
buffered messages, could be handled in a similar way. The terms
c!expr and c?x can also be used in the guards in which case they are
treated as boolean expressions with the meaning that a communi-
cation guard fails if there is no communication partner in the case
of synchronous communication or if the corresponding write- or
read-operation for a FIFO channel c is not enabled, since the buffer
is full or empty, respectively.
For an example, Fig.1 shows the Probmela-code for the random-
ized leader election protocol a la [18]. The goal is to choose a
leader among n processes P1, . . . ,Pn that are arranged in a ring by
a sequence of random decisions that are made by each participat-
ing process independently. Each process owns a channel out of an
array c of n channels, and has a process id in {1, . . . ,n}. We refer
to the process id and the predeccor by MY_PID and MY_PRED.
In addition, any process uses the local boolean variables tmp and
is_active. Furthermore, we use a shared variable noa which serves

1 DO :: is_active ⇒
2 PIF [0.5] ⇒ c[MY_PID]!0; my_choice := 0
3 [0.5] ⇒ c[MY_PID]!1; my_choice := 1
4 FIP
5 IF :: c[MY_PRED]?1 ∧ my_choice = 0
6 ⇒ noa := noa−1; is_active := false
7 :: else⇒ skip
8 FI
9 :: ¬is_active ⇒ c[MY_PRED]?tmp; c[MY_PID]!tmp
10 OD

Figure 1: Randomized leader election a la [18]

as counter for the active processes which means the number of pro-
cesses that are still candidates for the leadership. The initial value
of noa is N. At the beginning each process is in state active (line
1), picks a value my_choice ∈ {0,1} randomly and sends it over
its channel, stated by the output command c[. . .]! (lines 2 and 3).
The successor reads this choice and goes to passive mode (where it
only passes incoming messages, lines 5 and 9) when its value was
0 and its predecessor’s value was 1, in which case variable noa is
decremented. Eventually noa becomes 1 which means that a leader
has been elected.

Operational semantics.. The stepwise interleaving behavior of a
Probmela program can be formalized by a Markov decision pro-
cess (MDP). We skip the formal semantics by means of SOS-rules
for the processes and programs here, which (together with other
examples such as the IPv4zeroconf protocol) can be found in [1].
Instead we provide the definition of a MDP and sketch the ideas for
the operational semantics.
AMarkov decision process is a tupleM = (S,Act,P,s0,AP, label)
where S is a finite set of states, Act a finite set of actions, P : S×
Act× S → [0,1] is the three-dimensional transition matrix which
specifies the enabled actions in state s and their probabilistic effect,
s0 ∈ S the initial state, AP a set of atomic propositions and label :
S→ 2AP the labeling function that assigns to any state s the set of
atomic propositions that are assumed to hold in s. We require that
for all states s and actions a, $t∈SP(s,a,t) ∈ {0,1}.
Act(s) = {a∈Act : ∃t ∈ S.P(s,a,t) > 0} denotes the set of enabled
actions in state s. Intuitively, if the current state is s then there
is a nondeterministic choice between the enabled actions in s. If
action a ∈ Act(s) is selected then P(s,a,t) denotes the probability
for reaching state t.

Given a Probmela-program P = P1‖ . . .‖Pn then the states in the
associated MDP have the form s = 〈!1, . . . ,!n,%,&〉 where !i is the
current location of process Pi (value for the control variable for
process Pi), % is an evaluation for the variables (i.e., a function that
assigns values to the variables) and & an evaluation for the FIFO
channels (i.e., a function that assigns to any FIFO channel c the
word describing c’s current content).
For the initial state, we require that the !i’s are the starting lo-
cations for the processes, all FIFO channels are empty and the
variables have certain default values. The transition relation de-
scribes the one-step behavior of P which could be an individual
step of one process Pi with no synchronous communication ac-
tion or a handshaking of two processes Pi and Pj via complemen-
tary synchronous communication actions. Non-trivial distributions
with two or more successor states can be obtained if Pi performs a
probabilistic choice (PIF-FIP), a randomized assignment or a write-
operation into a lossy FIFO channel.
The action names for the transitions are only needed for technical

reasons. The atomic propositions that serve as labels for the states
can be any assertion about the locations of the processes, the val-
ues of the program variables or the contents of the channels. For
instance, there might be atomic propositions stating that "the cur-
rent location of P3 is line 167 of P3’s Probmela-code" or "x< y−5"
or "the buffer of channel c is empty".

3. VERIFYING QUANTITATIVE
PROPERTIES

We now turn to the question how to reason about the probabilitistic
behavior of a randomized protocol modelled in Probmela or some
other formalism with an operational MDP-semantics. As it is stan-
dard for the verification of distributed systems, the most popular
approach performs a ”worst-case” analysis that ranges over all po-
tential resolutions of the nondeterminism, i.e., the selection of one
of the enabled actions in the current state. If none of the processes
of a Probmela-program contains nondeterministic choices then the
selection of one action per state means chosing the process which
performs the next step (two processes in case of a synchronous
handshaking).
For MDPs the standard notion of a probability measure assumes a
fixed instance, often called scheduler, policy, strategy or adversary,
that resolves the nondeterministic choices by chosing one enabled
action for the current state s and the system history (formalized by
a finite path from the initial state to s). Given a scheduler D, M ’s
behavior under D can be described by a Markov chain on which
we may use the standard probability measure on its maximal paths.
Here, a maximal path denotes an alternating sequence of consec-
utive transitions ' = s0

a0−→ s1
a1−→ . . . such that si ∈ S, ai ∈ Act(si)

and P(si,ai,si+1) > 0 which is either infinite or ends in a terminal
state, i.e., a state si with Act(si) = /0. Assuming a formalism like
linear temporal logic (LTL) that specifies path-properties, we then
may speak about the maximal or minimal probability for a path-
property to hold for an MDP.
Let us briefly summarize the main concepts of LTL, its semantics
over MDPs and the model checking algorithm. LTL formulas are
built from the grammar

! ::= true
∣∣ p

∣∣ !1∧!2
∣∣ ¬!

∣∣©!
∣∣ (1U(2

where p ∈ AP is an atomic proposition, ∧ and ¬ denote standard
conjunction and negation, while© denotes the next step operator
and U the until operator. Given a maximal path ' in a MDP, the
satisfaction relation ' |= ! is defined as in the non-probabilistic
case (see e.g. [10]). For instance, ©p states that p holds in the
second state, while pUq holds for any path that reaches a q-states
via finitely many (possibly zero) p-states. The derived operators !
(eventually) and " (always) are obtained as usual through !! =
trueU! and "!=¬!¬!. The combination of them yields e.g. the
property "(send → !received) stating that any sent message will
eventually be received or "!”process P1 is a leader” stating that
process P1 will be elected infinitely often as the leader. The prop-
erty !”P1 is a leader” is used in the leader-election example to de-
note that eventually process P1 will be elected.
Given a scheduler D for a MDPM and a LTL formula !, the proba-
bility PrD(!) denotes the probability for the maximal paths starting
in the initial state and satisfying !. Depending on whether ! de-
scribes the "bad" or "good" behaviors, a quantitative analysis with
respect to formula ! amounts calculating the extremal probability
supDPrD(!) or infD PrD(!) where D ranges over all schedulers.
For instance, for a leader protocol one might aim at a high (worst-
case) probability 1−) that a leader is elected within the first 10

rounds for all schedulers, which amounts showing that

infDPrD
(
!(noa = 1∧#rounds ≤ 10)

)
≥ 1−).

where ”noa= 1” stands for the property ”a leader has been elected”,
while #rounds is a counter for the number of attempts to find a
leader (not shown in Fig.1). Equivalent to this is the requirement
that the maximal probability for the event given by the formula

"
(
#rounds ≤ 10→ noa .= 1

)

is smaller or equal). In fact, due to the fact that

infD PrD
(
!) = 1− supDPrD

(
¬!)

it suffices to provide an algorithm for calculating maximal prob-
abilities for LTL formulas under all schedulers. The idea for this
relies on an automata-based approach [28, 29, 10, 12, 6]. Using
standard techniques, one first constructs a deterministic"-automata
A! for the given LTL formula !. Then, one generates the (reach-
able fragment of the) productM ×A! which is again an MDP. The
states in M ×A! have the form 〈s,z〉 where s is a state in M and
z an automata-state. The paths in M ×A! encode the pairs 〈',*〉
consisting of a path ' in M and their runs * in A!. Then, one
can show that the maximal probability for ! inM agrees with the
maximal probability for the paths inM ×A! where the acceptance
condition of A! holds. The latter depends on the chosen type of
deterministic "-automaton. For instance, for Streett automaton the
acceptance condition is a strong fairness condition which can be
treated in a rather simple way: by analysing the strongly connected
components, the Streett acceptance condition allows to derive a set
C of states in the product such that

supDPrDM (!) = supDPrDM×A!
(!C).

That is, the automata-approach provides a reduction of LTL-model
checking problem for MDPs to the problem of computing maximal
reachability probabilities in MDPs. The latter is solvable by means
of a linear program [9, 7].
To give an idea for the linear programming approach, assume that
M is a MDP with state space S and we ask for the maximal prob-
ability to reach a set C ⊆ S. The idea is now to use variables xs
for all states s ∈ S for the maximal probability to reach C from s.
We first may perform a graph analysis for computing the sets S0
of all states that cannot reach C and the set S1 of states that reach
C almost surely under some scheduler. Then, xs = 0 if s ∈ S0 and
xs = 1 if s ∈ S1. For the remaining states, we use the inequality

xs ≥ $
t∈S
P(s,a,t) · xt

for all actions a ∈ Act(s). This system of inequalities has a unique
minimal solution with xs ∈ [0,1] and this minimal solution agrees
with the maximal reachability probabilities.

4. THE MODEL CHECKER LIQUOR
The modeling language Probmela described in section 2 yields the
input language of the tool LiQuor,1 which supports the analysis of
probabilistic reactive systems by means of model checking linear-
time properties in a quantitative setting. More precisely, the func-
tionality of LiQuor is to take a Probmela-program P = P1‖ . . .‖Pn
and a linear temporal logic (LTL) formula ! as input and to calcu-
late the maximal or minimal probability that ! holds for P .
1Linear Time Qualitative and Quantitative Analysis of reactive
Systems

!"#$%&'()*"#+"(, P -.-)/#",0'(1 ϕ

A203#,(3#4

56%!7-891!"#$%% 203#,(3#41+&4&"(3#"

5698
2!7

%#:&'15;&<=>4+?1
"&(<;($>'>3@1

24('@A>AB1,(CDE,>4D1
*"#$($>'>3@1/#"

>41
ϕ

M

M%F!

GHGGHGGHHGH
GGGHIGHGHHG
GHGHGHGGHGH

!2J%15#:&

.##'1'>$"("@1/#"1
;(4:'>4+1A&3AB1
J55AB1285A

8C3&"4('13##'A?
+"(*;K>L1MK>A0('>L(3>#4N
-!OJ6-P81M'>4D1*"#+"DN

P>"30('1,(<;>4&1E15#"&1>,*'&,&43(3>#4

"&:0<&:1%F!11111111/#"1M̃
M×A

M A

M × A

M ′

M

P

Figure 2: Schema for LiQuor

A system description in Probmela is translated into an intermedi-
ate XML-like format, called PASM (Probabilistic Assembler like
Language), for a virtual machine that serves for generating the
MDP-semantics. PASM is an easily extendable low-level guard-
oriented system description language and moreover contains ele-
ments to control the model checking process. PASM serves as the
target language for the Probmela compiler that was implemeneted
by constructing an ANTLR [24] grammar out of Probmela’s syntax
and semantics.
To tackle the state explosition problem, LiQuor generates the MDP
for P with an on-the-fly technique, similar to those realized in the
popular non-probabilistic model checker SPIN, and using partial
order reduction criteria. The idea of the partial order reduction
approach [25, 15, 27] is to analyse only a fragment of the state
space, rather than the full system model, using the redundancies
in interleaving-based representations of asynchronous systems that
origin from the commutativity of independent actions executed by
processes that run in parallel. Independent actions are those that
can be executed in any order without affecting each other’s enabled-
ness and with the same effect as they were executed in parallel.
Typically, this is the case for “local, internal” actions of different
processes, i.e., actions that do not refer to shared variables and do
not depend on the communication possibilities.
In [4, 11], Peled’s partial order reduction approach with so-called
ample-sets, has been adapted to the probabilistic setting for veri-
fying linear time properties. For this, one aims at a sub-MDP M ′

of M , which means a MDP where the state space is a subset of
M ’s state space and where the enabled actions of a state s′ inM ′,
called the ample-set of s, are contained in Act(s), and which can
be generated with an on-the-fly technique, without generating the
full MDPM . The underlying notion for the independence of two
actions + and , requires that for any state s with {+,,} ⊆ Act(s)
we have (i) , is enabled in any +-successor of s, and vice versa,
and (ii) the probabilistic effect of the action sequences +, and ,+
agree, that is,

$
t∈S
P(s,+,t) ·P(t,,,w) = $

u∈S
P(s,,,u) ·P(u,+,w)

A1 If ample(s) .= Act(s) then all actions +∈ ample(s) are stutter
actions.

A2 If s +1−→ . . .
+n−→ sn

,−→ . . . is a path inM where , is dependent
on some action in ample(s) then +i ∈ ample(s) for some i ∈
{1, . . . ,n}.

A3 For each end component (T,A) in M ′ there is a state t ∈ T
with ample(t) = Act(t).

A4 If s +1−→ . . .
+n−→ sn

-−→ . . . is a path inM where

+1, . . . ,+n,- /∈ ample(s)

and - is probabilistic then |ample(s)| = 1.

Figure 3: Conditions for the ample-sets

for all states w.
To ensure thatM andM ′ have the same extremal probabilities for
LTL formulas, the chosen ample-sets have to fulfill conditions A1
-A4 in Fig.3. (In addition, we have to require that the ample-set is
non-empty for any non-terminal state.) Conditions A1, A2 and A3
are exactly as in the non-probabilistic case. A1 requires that for any
state s inM ′ that is not fully expanded, all ample actions are stut-
ter actions, which means that they do not change the state-labels.
The most difficult condition is A2. Speaking roughly, condition
A2 ensures that any path ' in the full MDPM can be transformed
into a path '′ inM ′ by switching the order of independent actions.
To ensure that through infinitely many permutations of indepen-
dent actions the orginal path ' and the new path '′ fulfill the same
LTL formulas, condition A3 is needed. The concept of end com-
ponents has been introduced in [13]. They can be understood as
the MDP-counterpart of strongly connected subgraphs or ergodic
sets of Markov chains. They are defined as strongly connected sub-
MDPs N where certain fair schedulers can ensure that once N is
entered, N is never left and almost surely all states of N are visited
infinitely often.
While A1-A3 are as in the non-probabilistic case, the last condi-
tion A4 is special for the probabilistic approach. It ensures that
the above path-transformation can be applied “simultaneously” to
the paths generated by a given scheduler D forM , thus yielding a
schedulerD′ forM ′ such that the probabilities for all LTL-formulas
under D and D′ agree.
In order to apply the ample set method in practice the conditions
in Fig.3 are checked during DFS-based model construction. While
condition A1 is local and easy to check conditions A2, A3 and A4
are not as easy to handle. For this reasons, A2 - A4 are replaced
with stronger and computationally simpler conditions. See Fig. 3.
Peled proved (see [25]) that deciding A2 is of the same compu-
tational complexity as deciding the reachability problem. For this
reason, A2 is replaced with the stronger conditionH2which is easy
to check with the independence relation. The independence relation
itself is established by analysing for each action-pair (+,,) the oc-
currence of variables that are written in + and read in , (or vice
versa). In this case the actions are considered as dependent.2 Simi-
larily, A3 is replaced by the simpler sufficient condition H3 which
looks for DFS-backward edges and can simply be integrated in the

2Note of course that this is a heuristic, too. There could be com-
mon variables with just the right content with + and , still being
independent.

H1 = A1

H2 Consider as ample set candidates only ample(s) = Act(Pi,s)
all enabled actions of a process Pi in state s, and assure that:

If ample(s) .= Act(s) then each action + ∈ ample(s) is
independent of all other processes Pj, j .= i (future) actions.

H3 Let ... +n−1−→ sn−1
+n−→ sn

+n+1−→ sn+1...
+ j−→ s j be the DFS-stack

in the construction ofM ′, ample(sn) = Act(sn) and

. ∃n′ : n< n′ < j : ample(sn′) = Act(sn′).

If a backward edge is discovered from sj to a state si where
n< i< j, then put ample(s j) = Act(s j).

H4 Assure that ample(s) = Act(s) or |ample(s)| = 1.

Figure 4: Heuristics for the ample-sets

on-the-fly construction of the reduced MDP M ′. The correctness
of H3 follows by the fact that any end component contains a cy-
cle. To guarantee that A4 holds we switch to condition H4 which
is stronger but easy to implement.

Experimental results. The leader election protocol can be con-
sidered as representative for a setting where asynchronous (dis-
tributed) processes communicate information under unreliable con-
ditions in order to establish a certain goal. In Fig.5 results for the
leader election protocol with a various number of processes are pre-
sented. The columns ”lp-size” show the number of inequalities in
the linear program that has to be solved to calculate the measure of
all paths that satisfy the formula under consideration.

(unreduced model)
procs states transitions lp-size
2 414 892 427
3 10584 32611 14784
4 214219 865928 499121
5 4386319 22159973 16520905
6 89042275 552863314 not calculated

(reduced with partial order red.)

procs states transitions lp-size
2 333 653 319
3 8274 22130 9136
4 151186 500212 259462
5 2819281 10599317 7264947
6 51874770 223645588 not calculated

Figure 5: The asynchronous leader election protocol with prop-
erty !(process P1 is a leader).

According to these results it seems that the reduction on the num-
ber of transitions has a greater impact on the lp-reduction than the
reduction on the number of states. This is as we expected because
for each state that is ommited there is the possibility of ”saving”
several actions which do not occur as inequalities anymore. The
runtime is omitted in the table since our implementation does not
include full optimization for speed, yet.

5. CONCLUSION AND FUTUREWORK
We described the main concepts for verifying randomized proto-
cols with the partial order approach and a Promela-like modelling
language to specify parallel process-based models that can con-
tain both nondeterministic and probabilistic choices and is able to
handle standard data elements like communication-channels and
variables. Experiments with randomized protocols (such as leader
election and other coordination algorithms for distributed systems)
show promising reductions of the state space. This leads to smaller
linear programs that necessarily go along with quantitative analy-
sis of probabilistic reactive systems. Reductions on the size of the
linear program directly impact on computation times.
A broader list of LiQuor’s planned features include dynamic process
creation and destruction, the use of Streett and Rabin-automata, im-
provents on the search of end components, improvements on the
partial order heuristics and an efficient connection to linear pro-
gram solvers. All of these features are currently under develop-
ment, some of them will be included in a forthcoming public ver-
sion of LiQuor.

6. REFERENCES
[1] C. Baier, F. Ciesinski, and M. Größer. Probmela: a modeling

language for communicating probabilistic systems.
MEMOCODE’04, pages 57–66. IEEE CS Press, 2004.

[2] C. Baier, E. Clarke, V. Hartonas-Garmhausen,
M. Kwiatkowska, and M. Ryan. Symbolic model checking
for probabilistic processes. ICALP’97, LNCS 1256, pages
430–440, 1997.

[3] C. Baier, P. D’Argenio, and M. Größer. Partial order
reduction for probabilistic branching time. QAPL’05, To
appear in ENTCS.

[4] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction
for probabilistic systems. QEST’04, IEEE CS Press, pages
230–239, 2004.

[5] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and
M. Siegle, editors. Validation of Stochastic Systems, LNCS
2925, 2003.

[6] C. Baier and M. Kwiatkowska. Model checking for a
probabilistic branching time logic with fairness. Distributed
Computing, 11:125–155, 1998.

[7] A. Bianco and L. de Alfaro. Model checking of probabilistic
and nondeterministic systems. FST & TCS’95, LNCS 1026,
pages 499–513, 1995.

[8] H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and R. Klaren.
The modest modeling tool and its implementation. Computer
Performance Evaluation/TOOLS, pages 116–133, 2003.

[9] C. Courcoubetis and M. Yannakakis. Markov decision
processes and regular events (extended abstract). ICALP’90,
LNCS 443, pages 336–349, 1990.

[10] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. Journal of the ACM,
42(4):857–907, 1995.

[11] P.R. D’Argenio and P. Niebert. Partial order reduction on
concurrent probabilistic programs. QEST’04, IEEE CS
Press, pages 230–239, 2004.

[12] L. de Alfaro. Temporal logics for the specification of
performance and reliability. STACS’97, LNCS 1200, pages
165–179, 1997.

[13] L. de Alfaro. Formal Verification of Probabilistic Systems.
Ph.D. thesis, Stanford University , 1997.

[14] E. Dijkstra. Guarded commands, non-determinacy and the
formal derivation of programs. Comm. ACM, 18:453-457,
1975

[15] P. Godefroid. On the costs and benefits of using partial-order
methods for the verification of concurrent systems. In [26],
pages 289–303, 1996.

[16] P. Godefroid. Partial Order Methods for the Verification of
Concurrent Systems: An Approach to the State Explosion
Problem, LNCS 1032, 1996.

[17] G. Holzmann. The SPIN Model Checker, Primer and
Reference Manual. Add.Wes., 2003.

[18] A. Itai and M. Rodeh. Symmetry breaking in distributed
networks. Inf. Comput., 88(1):60–87, 1990.

[19] B.Jeannet, P.d’Argenio and K.G. Larsen. RAPTURE: A tool
for verifying Markov Decision Processes. Proc.Tools Day /
CONCUR’02. Tech.Rep. FIMU-RS-2002–05,84–98, 2002.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with prism: A hybrid approach.
International Journal on Software Tools for Technology
Transfer (STTT), to appear, 2004.

[21] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San
Francisco, CS, 1996. MIT.

[22] C. Morgan and A. McIver. pGCL: formal reasoning for
random algorithms. Proc. WOFACS’98, Spec. Iss.of SACJ,
22:14–27, 1999.

[23] C. Morgan and A. McIver. Abstraction, Refinement and
Proof for Probabilistic Systems. Monographs in Computer
Science. Springer, 2005.

[24] Terence Parr. The ANTLR Reference Manual. 2.6 edition,
1999.

[25] D. Peled. Partial order reduction: Linear and branching time
logics and process algebras. In [26], pages 79–88, 1996.

[26] D. Peled, V. Pratt, and G. Holzmann, editors. Partial Order
Methods in Verification, volume 29(10) of DIMACS.
American Mathematical Society, 1997.

[27] A. Valmari. Stubborn set methods for process algebras. In
[26], pages 79–88, 1996.

[28] M. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. FOCS’85, IEEE CS Press, pages
327–338, 1985.

[29] M. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification (preliminary report).
LICS’86, pages 332–344, IEEE Computer Society Press,
1986.

