Maschinelles Übersetzen natürlicher Sprachen
11. Übungsblatt
2017-01-26

Aufgabe 1

We consider the CFG G with the set of productions R:

$$
\rho_1: S \rightarrow SS, \quad \rho_2: S \rightarrow a,
$$

which generates the language $\{a^n \mid n \geq 1\}$. In this scenario, we let $X = \Sigma^+ \cup \{\bot\}$, $Y = D(G) \cup \{\bot\}$ where $D(G)$ is the set of all (leftmost) derivations of G, and $Z = \emptyset$.

We fix the probability model $p: \Omega \rightarrow M(Y \times X \mid Z)$ by letting $\Omega = [0, 1]$, i.e., the interval of reals from 0 to 1. Intuitively, $\omega \in \Omega$ is the probability of production ρ_1, and hence $1 - \omega$ is the probability of production ρ_2. Note that every derivation for a^n consists of $n - 1$ occurrences of ρ_1 and n occurrences of ρ_2. Then, as usual, we define the probability distribution $p_\omega(\emptyset)$ of $Y \times X$ follows:

$$
p_\omega(\emptyset)(y, x) = \begin{cases}
\omega^{n-1} \cdot (1 - \omega)^n & \text{if } y \text{ derives } x, x = a^n, \text{ and } n \geq 1, \\
1 - \sum_{n \geq 1} C_{n-1} \cdot \omega^{n-1} \cdot (1 - \omega)^n & \text{if } y = \bot \text{ and } x = \bot, \\
0 & \text{otherwise},
\end{cases}
$$

where C_n is the number of derivations for a^{n+1}, which is given by

$$
C_n = \frac{(2n)!}{n! \cdot (n+1)!}.
$$

(Catalan number)

1. Let us consider the $X \times Z$-corpus c with

$$
c(aa, \emptyset) = 4, \ c(aaa, \emptyset) = 6, \text{ and } c(x, \emptyset) = 0 \text{ for every other } x.
$$

Derive the $Y \times X \times Z$-corpus $c(\omega, p)$. Then compute $(p)_{cb}(\omega)$.

2. We let $A = \{SS, a\}$ and $B = \{S\}$ be the sets of, respectively, all right-hand sides and all left-hand sides in the set R of productions. Moreover, we let $C = A \times B$. Define an appropriate counting information $\kappa = (q, \lambda, \pi)$ such that $p_\omega(y, x \mid \emptyset) = (\kappa')_{sc}(y, x \mid \emptyset)$.

Consider the corpus c of task 1 and specify the relevant entries of the corpus $c(\omega, \kappa)$. Afterwards, give the simple counting step mapping $(\kappa)_{sc}(\omega)$.

3. We define the io-info $\mu = (q, \pi_1, \pi_2, K, H)$ with q as before and

- $\pi_1: Y \rightarrow X$ maps every derivation to its derived string in Σ^*, and $\pi_2: Y \rightarrow Z$ maps every derivation to \emptyset,
- $K(\emptyset)$ is the unambiguous RTG with one state $*$ and the rules $\langle**, (SS, S), * \rangle$ and $\langle e, (a, S), * \rangle$,
- $H(a^n, \emptyset)$ is the unambiguous RTG with states $\{1, \ldots, n\}$, n being initial, and the rules $\langle jk, (SS, S), j + k \rangle$ and $\langle e, (a, S), 1 \rangle$.
Compute:
\[
\begin{align*}
\chi_{\omega,aa}(SS,S) &= \beta_{\omega,aa} \\
\chi_{\omega,aa}(a,S) &= \beta_{\omega,aaa} \\
\chi_{\omega,aaa}(SS,S) &= c(\omega,\mu)(SS,S) \\
\chi_{\omega,aaa}(a,S) &= c(\omega,\mu)(a,S)
\end{align*}
\]

Show that \(\langle \mu \rangle_{\omega}(\omega) \ni c(\omega,\mu)\) and compute the following values:
\[
\begin{align*}
\overline{c(\omega,\mu)(SS,S)} &= \\
\overline{c(\omega,\mu)(a,S)} &=
\end{align*}
\]